論文の概要: TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC
- arxiv url: http://arxiv.org/abs/2404.13184v2
- Date: Wed, 23 Oct 2024 16:57:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:52:40.768838
- Title: TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC
- Title(参考訳): TANQ-Sim:Perlmutter HPC上のQIRによるテンソルコア加速ノイズ量子システムシミュレーション
- Authors: Ang Li, Chenxu Liu, Samuel Stein, In-Saeng Suh, Muqing Zheng, Meng Wang, Yue Shi, Bo Fang, Martin Roetteler, Travis Humble,
- Abstract要約: TANQ-Simは、コヒーレントノイズと非コヒーレントノイズの両方で実用的なディープ回路をシミュレートするために設計された、フルスケールの密度行列ベースのシミュレータである。
このようなシミュレーションにかかわる計算コストに対処するため,新しい密度行列シミュレーション手法を提案する。
また,その性能を最適化するために,密度行列シミュレーションのための特定のゲート融合手法を提案する。
- 参考スコア(独自算出の注目度): 16.27167995786167
- License:
- Abstract: Although there have been remarkable advances in quantum computing (QC), it remains crucial to simulate quantum programs using classical large-scale parallel computing systems to validate quantum algorithms, comprehend the impact of noise, and develop resilient quantum applications. This is particularly important for bridging the gap between near-term noisy-intermediate-scale-quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC). Nevertheless, current simulation methods either lack the capability to simulate noise, or simulate with excessive computational costs, or do not scale out effectively. In this paper, we propose TANQ-Sim, a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise. To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach that enables TANQ-Sim to leverage the latest double-precision tensorcores (DPTCs) in NVIDIA Ampere and Hopper GPUs. To the best of our knowledge, this is the first application of double-precision tensorcores for non-AI/ML workloads. To optimize performance, we also propose specific gate fusion techniques for density matrix simulation. For scaling, we rely on the advanced GPU-side communication library NVSHMEM and propose effective optimization methods for enhancing communication efficiency. Evaluations on the NERSC Perlmutter supercomputer demonstrate the functionality, performance, and scalability of the simulator. We also present three case studies to showcase the practical usage of TANQ-Sim, including teleportation, entanglement distillation, and Ising simulation. TANQ-Sim will be released on GitHub.
- Abstract(参考訳): 量子コンピューティング(QC)には顕著な進歩があったが、古典的な大規模並列計算システムを用いて量子プログラムをシミュレートし、量子アルゴリズムを検証し、ノイズの影響を理解し、レジリエントな量子アプリケーションを開発することが重要である。
これは、近未来のノイズ・中間量子(NISQ)コンピューティングと将来のフォールトトレラント量子コンピューティング(FTQC)のギャップを埋めるために特に重要である。
しかしながら、現在のシミュレーション手法にはノイズをシミュレートする能力がないか、過剰な計算コストでシミュレートできないか、効果的にスケールアウトしないかのいずれかがある。
本稿では,コヒーレントノイズと非コヒーレントノイズの両方で実用的な深部回路をシミュレートする,フルスケール密度行列ベースシミュレータTANQ-Simを提案する。
そこで本研究では, NVIDIA Ampere と Hopper GPU における最新の倍精度テンソルコア (DPTC) を TANQ-Sim で活用する密度行列シミュレーション手法を提案する。
私たちの知る限りでは、AI/ML以外のワークロードに対する倍精度テンソルコアの初めての応用です。
また,その性能を最適化するために,密度行列シミュレーションのための特定のゲート融合手法を提案する。
スケーリングでは,高度なGPU側通信ライブラリであるNVSHMEMを頼りに,通信効率向上のための効率的な最適化手法を提案する。
NERSC Perlmutterスーパーコンピュータの評価では、シミュレータの機能、性能、スケーラビリティが示されている。
また, テレポーテーション, 絡み込み蒸留, イジングシミュレーションなど, TANQ-Sim の実用性を示す3つのケーススタディを提案する。
TANQ-SimはGitHubでリリースされる。
関連論文リスト
- Introducing UNIQuE: The Unconventional Noiseless Intermediate Quantum Emulator [0.0]
最初のオープンソース量子コンピューティングエミュレータを実装した。
これには算術演算、量子フーリエ変換、量子位相推定が含まれる。
シミュレーションと比較して時間的・空間的な資源の節約に大きく貢献する。
論文 参考訳(メタデータ) (2024-09-11T04:24:51Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Framework for Integrating Quantum Simulation and High Performance Computing [0.0]
本稿では,HPCリソース上で動作する量子シミュレーションソフトウェアへのアクセスを効率化するフレームワークについて述べる。
これには、回路ベースの量子コンピューティングタスクのためのインターフェースと、必要なリソース管理インフラストラクチャが含まれる。
論文 参考訳(メタデータ) (2024-08-15T11:48:14Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
本研究では,量子トンネルシミュレーションの理論的背景とハードウェア対応回路の実装について述べる。
我々は、ハードウェアのアンダーユース化問題を解決するために、ZNEとREM(エラー軽減技術)と量子チップのマルチプログラミングを使用する。
論文 参考訳(メタデータ) (2024-04-10T14:27:07Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - Distributed Simulation of Statevectors and Density Matrices [0.0]
本論文は,デジタル量子コンピュータにおけるゲート,演算子,ノイズチャネル,その他の計算の分散フルステートシミュレーションのための新しいアルゴリズムを多数提示する。
単純で、一般的だが、一見制限的な分布モデルによって、リッチな先進的な施設の集合が実際に許されることを示す。
我々の結果は量子情報理論の読者に親しみやすい言語で導かれ、我々のアルゴリズムは科学シミュレーションコミュニティのために形式化されている。
論文 参考訳(メタデータ) (2023-11-02T18:00:36Z) - Efficient Quantum Circuit Simulation by Tensor Network Methods on Modern GPUs [11.87665112550076]
量子ハードウェアでは、一次シミュレーション法は状態ベクトルとテンソルネットワークに基づいている。
量子ビットと量子ゲートの数が増加するにつれて、ヒルベルト空間の圧倒的な大きさと広範な絡み合いにより、従来の状態ベクトルベースの量子回路シミュレーション手法は不十分であることが証明される。
本研究では,計算効率と精度の2つの側面から最適化手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T02:24:05Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
テンソルネットワークと決定図は、異なる視点、用語、背景を念頭に、独立して開発されている。
これらの手法が古典的量子回路シミュレーションにどのようにアプローチするかを考察し、最も適用可能な抽象化レベルに関してそれらの相似性を考察する。
量子回路シミュレーションにおいて,テンソルネットワークの使い勝手の向上と決定図の使い勝手の向上に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
我々は、量子ネットワークの並列シミュレーションの要件を特定し、最初の並列離散事象量子ネットワークシミュレータを開発する。
コントリビューションには、複数のプロセスに分散した共有量子情報を維持する量子状態マネージャの設計と開発が含まれています。
既存のシーケンシャルバージョンと並行してオープンソースツールとして,並列SeQUeNCeシミュレータをリリースする。
論文 参考訳(メタデータ) (2021-11-06T16:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。