Unlocking Robust Segmentation Across All Age Groups via Continual Learning
- URL: http://arxiv.org/abs/2404.13185v1
- Date: Fri, 19 Apr 2024 21:21:36 GMT
- Title: Unlocking Robust Segmentation Across All Age Groups via Continual Learning
- Authors: Chih-Ying Liu, Jeya Maria Jose Valanarasu, Camila Gonzalez, Curtis Langlotz, Andrew Ng, Sergios Gatidis,
- Abstract summary: We evaluate the performance of CT organ segmentation algorithms trained on adult data when applied to pediatric CT volumes.
We propose and evaluate strategies, including data augmentation and continual learning approaches, to achieve good segmentation accuracy across all age groups.
- Score: 6.733504608145498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most deep learning models in medical imaging are trained on adult data with unclear performance on pediatric images. In this work, we aim to address this challenge in the context of automated anatomy segmentation in whole-body Computed Tomography (CT). We evaluate the performance of CT organ segmentation algorithms trained on adult data when applied to pediatric CT volumes and identify substantial age-dependent underperformance. We subsequently propose and evaluate strategies, including data augmentation and continual learning approaches, to achieve good segmentation accuracy across all age groups. Our best-performing model, trained using continual learning, achieves high segmentation accuracy on both adult and pediatric data (Dice scores of 0.90 and 0.84 respectively).
Related papers
- PSAT: Pediatric Segmentation Approaches via Adult Augmentations and Transfer Learning [0.18641315013048293]
Direct application of segmentation models trained on adult data often yields suboptimal performance.<n>We introduce PSAT (Pediatric Approaches via Adult Augmentations and Transfer learning), a systematic study that investigates the impact of these axes on performance.<n>Our experiments reveal that a training plan based on an adult fingerprint dataset is misaligned with pediatric anatomy-resulting in significant performance degradation.
arXiv Detail & Related papers (2025-07-08T08:07:36Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.
We propose a novel continual learning-driven CT model that can segment complete anatomies.
Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Self-supervised Model Based on Masked Autoencoders Advance CT Scans
Classification [0.0]
This paper is inspired by the self-supervised learning algorithm MAE.
It uses the MAE model pre-trained on ImageNet to perform transfer learning on CT Scans dataset.
This method improves the generalization performance of the model and avoids the risk of overfitting on small datasets.
arXiv Detail & Related papers (2022-10-11T00:52:05Z) - Ensemble uncertainty as a criterion for dataset expansion in distinct
bone segmentation from upper-body CT images [0.7388859384645263]
The localisation and segmentation of individual bones is an important preprocessing step in many planning and navigation applications.
We present an end-to-end learnt algorithm that is capable of segmenting 125 distinct bones in an upper-body CT.
We also provide an ensemble-based uncertainty measure that helps to single out scans to enlarge the training dataset with.
arXiv Detail & Related papers (2022-08-19T08:39:23Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries.
To assist the clinical diagnosis and reduce the tedious workload of image interpretation, developing automated tools for COVID-19 identification with CT image is highly desired.
This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets.
arXiv Detail & Related papers (2020-09-15T11:09:04Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
arXiv Detail & Related papers (2020-04-17T08:25:43Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.