論文の概要: Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning
- arxiv url: http://arxiv.org/abs/2404.13194v1
- Date: Fri, 19 Apr 2024 21:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:58:55.226597
- Title: Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning
- Title(参考訳): データ拡張と機械学習によるプライバシ保護のデバイアス
- Authors: Zhixin Pan, Emma Andrews, Laura Chang, Prabhat Mishra,
- Abstract要約: データ拡張は、メンバシップ推論攻撃のようなプライバシ攻撃に機械学習モデルを公開する。
我々は、既知の攻撃に対して証明可能な防御を提供しながら、データのバイアスを低減することができるデータ強化と機械学習の効果的な組み合わせを提案する。
- 参考スコア(独自算出の注目度): 3.049887057143419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is widely used to mitigate data bias in the training dataset. However, data augmentation exposes machine learning models to privacy attacks, such as membership inference attacks. In this paper, we propose an effective combination of data augmentation and machine unlearning, which can reduce data bias while providing a provable defense against known attacks. Specifically, we maintain the fairness of the trained model with diffusion-based data augmentation, and then utilize multi-shard unlearning to remove identifying information of original data from the ML model for protection against privacy attacks. Experimental evaluation across diverse datasets demonstrates that our approach can achieve significant improvements in bias reduction as well as robustness against state-of-the-art privacy attacks.
- Abstract(参考訳): データ拡張は、トレーニングデータセットにおけるデータのバイアスを軽減するために広く使用されている。
しかし、データ拡張は、メンバーシップ推論攻撃のようなプライバシ攻撃に機械学習モデルを公開する。
本稿では、既知の攻撃に対して証明可能な防御を提供しながら、データのバイアスを低減することができるデータ強化と機械学習の効果的な組み合わせを提案する。
具体的には、拡散に基づくデータ拡張によるトレーニングモデルの公正性を維持し、マルチシャードアンラーニングを使用して、MLモデルから元のデータの識別情報を削除し、プライバシ攻撃に対する保護を行う。
多様なデータセットに対する実験的評価は、我々のアプローチがバイアス低減の大幅な改善と、最先端のプライバシー攻撃に対する堅牢性を実現することを実証している。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks [8.225819874406238]
PMA(Matching Attack)と呼ばれる新しいアベイラビリティー・アプローチを提案する。
PMAは、データの一部を摂動できる場合に機能する最初のアベイラビリティ攻撃である。
PMAは既存の手法よりも優れており、トレーニングデータの一部が摂動した場合に顕著なモデル性能劣化を達成できることを示す。
論文 参考訳(メタデータ) (2024-07-02T17:15:12Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
データリリースフレームワークである3A(Approximate, Adapt, Anonymize)を導入し、機械学習のデータユーティリティを最大化する。
本稿では,実データセットと民生データセットでトレーニングしたモデルの性能指標の相違が最小限に抑えられることを示す実験的な証拠を示す。
論文 参考訳(メタデータ) (2023-07-04T18:37:11Z) - Machine unlearning via GAN [2.406359246841227]
機械学習モデル、特にディープラーニングモデルは、トレーニングデータに関する情報を意図せずに記憶することができる。
本稿では,深層モデルにおけるデータ削除のためのGANアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-22T05:28:57Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Privacy Enhancing Machine Learning via Removal of Unwanted Dependencies [21.97951347784442]
本稿では,特定のアプリケーションに送信される前に,データ中のセンシティブな情報を除去する,教師付き・敵対型学習手法の新たな変種について検討する。
提案手法は,エンド・ツー・エンド方式で特徴マッピングと予測モデルを同時に保存するプライバシー保護を最適化する。
モバイルセンシングと顔データを用いた実験結果から,予測モデルの実用性能の維持に成功し,予測性能の低下を招いた。
論文 参考訳(メタデータ) (2020-07-30T19:55:10Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。