論文の概要: Ungeneralizable Examples
- arxiv url: http://arxiv.org/abs/2404.14016v1
- Date: Mon, 22 Apr 2024 09:29:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:35:57.085124
- Title: Ungeneralizable Examples
- Title(参考訳): 一般化不可能な例
- Authors: Jingwen Ye, Xinchao Wang,
- Abstract要約: 学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
- 参考スコア(独自算出の注目度): 70.76487163068109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The training of contemporary deep learning models heavily relies on publicly available data, posing a risk of unauthorized access to online data and raising concerns about data privacy. Current approaches to creating unlearnable data involve incorporating small, specially designed noises, but these methods strictly limit data usability, overlooking its potential usage in authorized scenarios. In this paper, we extend the concept of unlearnable data to conditional data learnability and introduce \textbf{U}n\textbf{G}eneralizable \textbf{E}xamples (UGEs). UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers. The protector defines the authorized network and optimizes UGEs to match the gradients of the original data and its ungeneralizable version, ensuring learnability. To prevent unauthorized learning, UGEs are trained by maximizing a designated distance loss in a common feature space. Additionally, to further safeguard the authorized side from potential attacks, we introduce additional undistillation optimization. Experimental results on multiple datasets and various networks demonstrate that the proposed UGEs framework preserves data usability while reducing training performance on hacker networks, even under different types of attacks.
- Abstract(参考訳): 現代のディープラーニングモデルのトレーニングは、公開データに大きく依存しており、オンラインデータへの不正アクセスのリスクを生じさせ、データのプライバシに関する懸念を高めている。
現在、学習不能なデータを作成するためのアプローチには、小さくて特別な設計のノイズが組み込まれているが、これらの手法はデータ使用性を厳密に制限し、承認されたシナリオでその潜在的な使用法を見落としている。
本稿では,学習不可能なデータの概念を条件付きデータ学習可能性に拡張し,その概念を UGE (textbf{U}n\textbf{G}eneralizable \textbf{E}xamples) に導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
プロテクタは、認証されたネットワークを定義し、UGEを最適化し、元のデータとその一般化不可能なバージョンの勾配に適合させ、学習性を確保する。
非許可学習を防止するため、共通特徴空間において指定された距離損失を最大化してUGEを訓練する。
さらに,潜在的攻撃から認証側を更に保護するために,未蒸留の最適化も導入する。
複数のデータセットと各種ネットワークの実験結果から,提案するUGEフレームワークは,異なるタイプの攻撃であっても,ハッカーネットワーク上でのトレーニング性能を低下させながら,データのユーザビリティを損なうことを示した。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning [3.049887057143419]
データ拡張は、メンバシップ推論攻撃のようなプライバシ攻撃に機械学習モデルを公開する。
我々は、既知の攻撃に対して証明可能な防御を提供しながら、データのバイアスを低減することができるデータ強化と機械学習の効果的な組み合わせを提案する。
論文 参考訳(メタデータ) (2024-04-19T21:54:20Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - What Can We Learn from Unlearnable Datasets? [107.12337511216228]
学習不可能なデータセットは、ディープニューラルネットワークの一般化を防ぐことによって、データのプライバシを保護する可能性がある。
学習不可能なデータセットでトレーニングされたニューラルネットワークは、一般化には役に立たない単純なルールであるショートカットのみを学ぶと広く信じられている。
これとは対照的に,ネットワークは高いテスト性能を期待できる有用な特徴を実際に学習することができ,画像保護が保証されていないことを示唆している。
論文 参考訳(メタデータ) (2023-05-30T17:41:35Z) - RecUP-FL: Reconciling Utility and Privacy in Federated Learning via
User-configurable Privacy Defense [9.806681555309519]
フェデレートラーニング(FL)は、クライアントがプライベートデータを共有せずに、協力的にモデルをトレーニングすることを可能にする。
近年の研究では、共有勾配によってプライベート情報が漏洩する可能性があることが示されている。
本稿では、ユーザ指定の機密属性により焦点を絞ることができる、ユーザ設定可能なプライバシ保護(RecUP-FL)を提案する。
論文 参考訳(メタデータ) (2023-04-11T10:59:45Z) - Transferable Unlearnable Examples [63.64357484690254]
第三者が許可なくデータのトレーニングを行うのを防ぐために、学べない戦略が導入された。
公開前にユーザーのデータに摂動を追加することで、公開データセットでトレーニングされたモデルを無効にすることを目指している。
本稿では、学習不可能な効果を他のトレーニング設定やデータセットに伝達することを目的とした、クラスワイズ・セパビリティ・ディミナント(CSD)に基づく新しい学習不可能な戦略を提案する。
論文 参考訳(メタデータ) (2022-10-18T19:23:52Z) - Auditing Privacy Defenses in Federated Learning via Generative Gradient
Leakage [9.83989883339971]
Federated Learning (FL)フレームワークは、分散学習システムにプライバシーの利点をもたらす。
近年の研究では、共有情報を通じて個人情報を漏洩させることが報告されている。
我々は,GGL(Generative Gradient Leakage)と呼ばれる新しいタイプのリーク手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T15:59:59Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - FedBoosting: Federated Learning with Gradient Protected Boosting for
Text Recognition [7.988454173034258]
フェデレートラーニング(FL)フレームワークは、データの集中化やデータオーナ間の共有なしに、共有モデルを協調的に学習することを可能にする。
本稿では,非独立性および非独立性分散(Non-IID)データに基づくジョイントモデルの一般化能力について述べる。
本稿では,FLの一般化と勾配リーク問題に対処する新しいブースティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-14T18:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。