Lattice Surgery for Dummies
- URL: http://arxiv.org/abs/2404.13202v2
- Date: Wed, 24 Apr 2024 18:12:00 GMT
- Title: Lattice Surgery for Dummies
- Authors: Avimita Chatterjee, Subrata Das, Swaroop Ghosh,
- Abstract summary: This paper endeavors to demystify lattice surgery, making it accessible to those without a profound background in quantum physics or mathematics.
It explores surface codes, introduces the basics of lattice surgery, and demonstrates its application in building quantum gates and emulating multi-qubit circuits.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum error correction (QEC) plays a crucial role in correcting noise and paving the way for fault-tolerant quantum computing. This field has seen significant advancements, with new quantum error correction codes emerging regularly to address errors effectively. Among these, topological codes, particularly surface codes, stand out for their low error thresholds and feasibility for implementation in large-scale quantum computers. However, these codes are restricted to encoding a single qubit. Lattice surgery is crucial for enabling interactions among multiple encoded qubits or between the lattices of a surface code, ensuring that its sophisticated error-correcting features are maintained without significantly increasing the operational overhead. Lattice surgery is pivotal for scaling QECCs across more extensive quantum systems. Despite its critical importance, comprehending lattice surgery is challenging due to its inherent complexity, demanding a deep understanding of intricate quantum physics and mathematical concepts. This paper endeavors to demystify lattice surgery, making it accessible to those without a profound background in quantum physics or mathematics. This work explores surface codes, introduces the basics of lattice surgery, and demonstrates its application in building quantum gates and emulating multi-qubit circuits.
Related papers
- Quantum Error Correction near the Coding Theoretical Bound [0.0]
We present quantum error-correcting codes constructed from classical LDPC codes.
These codes approach the hashing bound while maintaining linear computational complexity in the number of physical qubits.
This result establishes a pathway toward realizing large-scale, fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-12-30T18:48:54Z) - Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing.
By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level.
We argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
arXiv Detail & Related papers (2024-09-09T17:20:06Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Hardness of braided quantum circuit optimization in the surface code [0.1759008116536278]
Large-scale quantum information processing requires the use of quantum error codes to mitigate the effects of noise in quantum devices.
Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits.
However, error correction also introduces a significant overhead in time, the number of physical qubits, and the number of physical gates.
arXiv Detail & Related papers (2023-02-01T06:35:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decoherence and Quantum Error Correction for Quantum Computing and
Communications [0.0]
The protection of quantum information via quantum error correction codes (QECC) is of paramount importance to construct fully operational quantum computers.
The nature of decoherence is studied and mathematically modelled; and QECCs are designed and optimized so that they exhibit better error correction capabilities.
arXiv Detail & Related papers (2022-02-17T11:26:58Z) - Error Correction for Reliable Quantum Computing [0.0]
We study a phenomenon exclusive to the quantum paradigm, known as degeneracy, and its effects on the performance of sparse quantum codes.
We present methods to improve the performance of a specific family of sparse quantum codes in various different scenarios.
arXiv Detail & Related papers (2022-02-17T11:26:52Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.