論文の概要: PoseINN: Realtime Visual-based Pose Regression and Localization with Invertible Neural Networks
- arxiv url: http://arxiv.org/abs/2404.13288v2
- Date: Sat, 4 May 2024 01:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 22:46:58.357656
- Title: PoseINN: Realtime Visual-based Pose Regression and Localization with Invertible Neural Networks
- Title(参考訳): PoseINN: Invertible Neural Networksを用いたリアルタイム視覚ベースのPose回帰とローカライゼーション
- Authors: Zirui Zang, Ahmad Amine, Rahul Mangharam,
- Abstract要約: カメラからエゴ位置を推定することは、モバイルロボティクスから拡張現実に至るまで、ロボット工学における重要な問題である。
本稿では,画像の潜在空間とシーンのポーズの間のマッピングを見つけるために,非可逆ニューラルネットワーク(INN)を用いてこの問題を解決することを提案する。
我々のモデルは、訓練が速く、低解像度合成データのオフラインレンダリングしか必要とせず、SOTAと同じような性能を実現している。
- 参考スコア(独自算出の注目度): 3.031375888004876
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Estimating ego-pose from cameras is an important problem in robotics with applications ranging from mobile robotics to augmented reality. While SOTA models are becoming increasingly accurate, they can still be unwieldy due to high computational costs. In this paper, we propose to solve the problem by using invertible neural networks (INN) to find the mapping between the latent space of images and poses for a given scene. Our model achieves similar performance to the SOTA while being faster to train and only requiring offline rendering of low-resolution synthetic data. By using normalizing flows, the proposed method also provides uncertainty estimation for the output. We also demonstrated the efficiency of this method by deploying the model on a mobile robot.
- Abstract(参考訳): カメラからエゴ位置を推定することは、モバイルロボティクスから拡張現実に至るまで、ロボット工学における重要な問題である。
SOTAモデルはますます正確化が進んでいるが、計算コストが高いため、いまだに扱いにくい。
本稿では,インバータブルニューラルネットワーク(INN)を用いて画像の潜在空間とシーンのポーズのマッピングを求める。
我々のモデルは、訓練が速く、低解像度合成データのオフラインレンダリングしか必要とせず、SOTAと同じような性能を実現している。
正規化フローを用いることで,提案手法は出力に対する不確実性を推定する。
また,移動ロボットにモデルを配置することで,本手法の有効性を実証した。
関連論文リスト
- Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - High-Degrees-of-Freedom Dynamic Neural Fields for Robot Self-Modeling and Motion Planning [6.229216953398305]
ロボットの自己モデル(英: Robot self-model)は、ロボットの運動計画タスクに使用できる身体形態の表現である。
本研究では,高次自由度を条件とした動的オブジェクト中心シーンのためのエンコーダに基づくニューラル密度場アーキテクチャを提案する。
7-DOFロボットテストセットでは、学習された自己モデルは、ロボットの次元ワークスペースの2%のChamfer-L2距離を達成する。
論文 参考訳(メタデータ) (2023-10-05T16:01:29Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Markerless Camera-to-Robot Pose Estimation via Self-supervised
Sim-to-Real Transfer [26.21320177775571]
本稿では,オンラインカメラ・ロボット・キャリブレーションと自己監督型トレーニング手法を備えたエンドツーエンドのポーズ推定フレームワークを提案する。
我々のフレームワークはロボットのポーズを解くための深層学習と幾何学的ビジョンを組み合わせており、パイプラインは完全に微分可能である。
論文 参考訳(メタデータ) (2023-02-28T05:55:42Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Making DensePose fast and light [78.49552144907513]
このタスクを解くことができる既存のニューラルネットワークモデルは、非常にパラメータ化されている。
現在のモデルで端末のDense Pose推論を有効にするには、高価なサーバーサイドのインフラをサポートし、安定したインターネット接続が必要である。
本研究では,DensePose R-CNNモデルのアーキテクチャを再設計することで,最終的なネットワークがその精度の大部分を維持しつつ,より軽量で高速なネットワークを実現することを目的とする。
論文 参考訳(メタデータ) (2020-06-26T19:42:20Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。