論文の概要: SEGSRNet for Stereo-Endoscopic Image Super-Resolution and Surgical Instrument Segmentation
- arxiv url: http://arxiv.org/abs/2404.13330v2
- Date: Fri, 26 Apr 2024 12:05:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:13:44.249163
- Title: SEGSRNet for Stereo-Endoscopic Image Super-Resolution and Surgical Instrument Segmentation
- Title(参考訳): 立体内視鏡画像の超解像・手術機器分割のためのSEGSRNet
- Authors: Mansoor Hayat, Supavadee Aramvith, Titipat Achakulvisut,
- Abstract要約: SEGSRNetは、低解像度の立体内視鏡画像において、手術器具を正確に識別する課題に対処する。
我々の革新的なフレームワークは、セグメント化の前に最先端の超解像技術を適用することにより、画像の明瞭度とセグメンテーション精度を向上させる。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: SEGSRNet addresses the challenge of precisely identifying surgical instruments in low-resolution stereo endoscopic images, a common issue in medical imaging and robotic surgery. Our innovative framework enhances image clarity and segmentation accuracy by applying state-of-the-art super-resolution techniques before segmentation. This ensures higher-quality inputs for more precise segmentation. SEGSRNet combines advanced feature extraction and attention mechanisms with spatial processing to sharpen image details, which is significant for accurate tool identification in medical images. Our proposed model outperforms current models including Dice, IoU, PSNR, and SSIM, SEGSRNet where it produces clearer and more accurate images for stereo endoscopic surgical imaging. SEGSRNet can provide image resolution and precise segmentation which can significantly enhance surgical accuracy and patient care outcomes.
- Abstract(参考訳): SEGSRNetは、低解像度立体内視鏡画像における手術器具の正確な識別という課題に対処する。
我々の革新的なフレームワークは、セグメント化の前に最先端の超解像技術を適用することにより、画像の明瞭度とセグメンテーション精度を向上させる。
これにより、より正確なセグメンテーションのための高品質な入力が保証される。
SEGSRNetは、高度な特徴抽出と注意機構と空間処理を組み合わせることで、画像の詳細を鮮明にする。
提案モデルはDice,IoU,PSNR,SSIM,SEGSRNetなどの現行モデルより優れている。
SEGSRNetは、画像の解像度と正確なセグメンテーションを提供し、外科的精度と患者のケア結果を大幅に向上させることができる。
関連論文リスト
- PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
本研究では,PINNに基づくマルチスケール機能融合ネットワークを提案する。
ネットワークは、いくつかの構造的革新を通じて、効率的に統合し、グローバルにマルチスケールの機能をモデル化する。
このデコーダ部では,マルチスケール・フィーチャー・リファインメント・デコーダが採用され,マルチスケール・スーパービジョン機構と修正モジュールを組み合わせることで,セグメンテーション精度と適応性を大幅に向上する。
論文 参考訳(メタデータ) (2024-12-22T09:16:00Z) - U-Net in Medical Image Segmentation: A Review of Its Applications Across Modalities [0.0]
人工知能(AI)と深層学習(DL)の進歩は医療画像セグメンテーション(MIS)に変化をもたらした
これらのモデルは、様々な画像モダリティにまたがる効率的で正確な画素単位の分類を可能にする。
本稿では,様々な医用画像技術について検討し,U-Netアーキテクチャとその適応について検討し,その応用方法について考察する。
論文 参考訳(メタデータ) (2024-12-03T08:11:06Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network [2.752817022620644]
人工膝関節における画像分割に機械学習を用いる可能性は、そのセグメンテーション精度を改善し、プロセスを自動化し、外科医にリアルタイムの補助を提供する能力にある。
本稿では, リアルタイム全膝画像分割における深層学習手法を提案する。
大規模なデータセットに基づいてトレーニングされた深層学習モデルは、インプラントされた大腿骨とティアビアの両方を正確にセグメント化する際、優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-23T05:00:02Z) - A simple thinking about the application of the attention mechanism in medical ultrasound image segmentation task [12.26248863367439]
超音波画像中の病変や組織を分類または診断するためのベンチマーク注意適応フレームワーク(BAAF)を提案する。
BAAFは並列ハイブリッドアテンションモジュール(PHAM)と適応キャリブレーション機構(ACM)から構成される。
BAAFの設計は、CNNにおける「何」と「どこに」の焦点と選択の問題をさらに最適化し、医療用超音波画像における病変や組織のセグメンテーション精度を改善することを目指している。
論文 参考訳(メタデータ) (2023-10-02T06:15:50Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
超音波画像における臓器の解剖学的セグメンテーションは多くの臨床応用に不可欠である。
既存のディープニューラルネットワークは、臨床的に許容できるパフォーマンスを達成するために、トレーニングのために大量のラベル付きデータを必要とする。
本稿では,タスクベース超音速画像表現を最適化する学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T16:29:39Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Segmenting Medical Instruments in Minimally Invasive Surgeries using
AttentionMask [66.63753229115983]
我々は,オブジェクト提案生成システムであるAttentionMaskに適応し,将来的な提案を選択するための専用の後処理を提案する。
ROBUST-MIS Challenge 2019の結果から,適応型 AttentionMask システムは最先端のパフォーマンスを実現するための強力な基盤であることがわかった。
論文 参考訳(メタデータ) (2022-03-21T21:37:56Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。