論文の概要: Bridging the Gap Between Theory and Practice: Benchmarking Transfer Evolutionary Optimization
- arxiv url: http://arxiv.org/abs/2404.13377v1
- Date: Sat, 20 Apr 2024 13:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:19:56.951320
- Title: Bridging the Gap Between Theory and Practice: Benchmarking Transfer Evolutionary Optimization
- Title(参考訳): 理論と実践のギャップを埋める: ベンチマーク転送進化最適化
- Authors: Yaqing Hou, Wenqiang Ma, Abhishek Gupta, Kavitesh Kumar Bali, Hongwei Ge, Qiang Zhang, Carlos A. Coello Coello, Yew-Soon Ong,
- Abstract要約: 本稿では,ビッグデータタスクインスタンスの3つの重要な側面(ボリューム,多様性,速度)に基づいて分類された文献からの問題を統合する,実用的なTrEOベンチマークスイートのパイオニアとなる。
我々の主な目的は、既存のTrEOアルゴリズムを包括的に分析し、実践的な課題に取り組むための新しいアプローチを開発するための道を開くことである。
- 参考スコア(独自算出の注目度): 31.603211545949414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the field of Transfer Evolutionary Optimization (TrEO) has witnessed substantial growth, fueled by the realization of its profound impact on solving complex problems. Numerous algorithms have emerged to address the challenges posed by transferring knowledge between tasks. However, the recently highlighted ``no free lunch theorem'' in transfer optimization clarifies that no single algorithm reigns supreme across diverse problem types. This paper addresses this conundrum by adopting a benchmarking approach to evaluate the performance of various TrEO algorithms in realistic scenarios. Despite the growing methodological focus on transfer optimization, existing benchmark problems often fall short due to inadequate design, predominantly featuring synthetic problems that lack real-world relevance. This paper pioneers a practical TrEO benchmark suite, integrating problems from the literature categorized based on the three essential aspects of Big Source Task-Instances: volume, variety, and velocity. Our primary objective is to provide a comprehensive analysis of existing TrEO algorithms and pave the way for the development of new approaches to tackle practical challenges. By introducing realistic benchmarks that embody the three dimensions of volume, variety, and velocity, we aim to foster a deeper understanding of algorithmic performance in the face of diverse and complex transfer scenarios. This benchmark suite is poised to serve as a valuable resource for researchers, facilitating the refinement and advancement of TrEO algorithms in the pursuit of solving real-world problems.
- Abstract(参考訳): 近年、トランスファー進化最適化(TrEO)の分野は、複雑な問題の解決に対するその大きな影響の実現によって、かなりの成長をみせている。
タスク間で知識を伝達することで生じる課題に対処するために、多くのアルゴリズムが登場した。
しかし、転送最適化における '`no free lunch theorem'' は、様々な問題タイプにまたがって、単一のアルゴリズムが優位に立つことはないことを明らかにしている。
本稿では,様々なTrEOアルゴリズムの性能を現実的なシナリオで評価するために,ベンチマーク手法を採用することで,この問題点に対処する。
転送最適化の方法論的焦点が拡大しているにもかかわらず、既存のベンチマーク問題は設計が不十分なためにしばしば不足し、主に現実の妥当性に欠ける合成的な問題を特徴としている。
本稿では,ビッグデータタスクインスタンスの3つの重要な側面(ボリューム,多様性,速度)に基づいて分類された文献からの問題を統合する,実用的なTrEOベンチマークスイートのパイオニアとなる。
我々の主な目的は、既存のTrEOアルゴリズムを包括的に分析し、実践的な課題に取り組むための新しいアプローチを開発するための道を開くことである。
ボリューム,多様性,速度の3次元を具現化する現実的なベンチマークを導入することで,多様かつ複雑な転送シナリオに直面したアルゴリズム性能の理解を深めることを目指す。
このベンチマークスイートは研究者にとって貴重なリソースとして機能し、現実世界の問題を解決するためにTrEOアルゴリズムの洗練と進歩を促進する。
関連論文リスト
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
大型言語モデル(LLM)の性能向上のための有望なアプローチとして、Chain-of-Thought(CoT)推論が登場した。
本稿では,これらの課題に対処するための新しい推論境界フレームワーク(RBF)を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:26:28Z) - Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms [0.0]
多くの問題における最適化アルゴリズムの性能評価は,数値スケールの多様性が原因で複雑な問題となる。
本稿では,この問題を広範囲に検討し,根本原因の根本原因を徹底的に解析する上で説得力のある事例を提示する。
本研究では,「絶対ランク付け」と呼ばれる新しい数学的モデルとサンプリングに基づく計算手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T00:55:03Z) - A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We developed a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints。
2つのよく知られた実世界のアプリケーションでその効果を実証する。
論文 参考訳(メタデータ) (2024-06-14T15:59:36Z) - Single and Multi-Objective Optimization Benchmark Problems Focusing on
Human-Powered Aircraft Design [0.0]
本稿では,単目的最適化と多目的最適化の両方の研究を進めることを目的とした,新しいベンチマーク問題を提案する。
これらのベンチマーク問題は、流体力学や材料力学のような現実世界の設計上の考慮事項を取り入れているという点でユニークな問題である。
本稿では,これらの課題における3つの難易度と翼分割パラメータを提案し,様々な研究ニーズに適合するスケーラブルな複雑性を実現する。
論文 参考訳(メタデータ) (2023-12-14T14:01:41Z) - Combinatorial Optimization with Policy Adaptation using Latent Space Search [44.12073954093942]
本稿では,複雑なNPハード問題を解くために,パフォーマンスアルゴリズムを設計するための新しいアプローチを提案する。
我々の検索戦略は11の標準ベンチマークタスクにおける最先端のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-13T12:24:54Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
大規模言語モデル(LLM)は人工知能の大幅な進歩を導いた。
数学的問題を解く能力を高めるために,textbfSEquential subtextbfGoal textbfOptimization (SEGO) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:56:40Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
大規模言語モデルの複雑な推論能力を高めるために,textbftextitThought Propagation (TP)を提案する。
TP はまず LLM に対して,入力問題に関連する類似問題の集合を提案し,解決するよう促す。
TPは、類似問題の結果を再利用して、新しいソリューションを直接生成したり、スクラッチから得られた初期ソリューションを修正するための知識集約的な実行プランを導出する。
論文 参考訳(メタデータ) (2023-10-06T01:40:09Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
様々な多目的問題に対処できる効率的な進化的アルゴリズム(E3A)を開発した。
SDEにインスパイアされたE3Aでは,新しい集団維持法が提案されている。
我々は、広範囲な実験を行い、E3Aが11の最先端の多目的進化アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:35:46Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
多目的最適化は先進的な研究領域であり、近年顕著な研究の勢いを増している。
本稿では,多因子最適化シナリオのための新しいアルゴリズムスキームを提案する。
提案したMFCGAはセルオートマタの概念に基づいて,問題間の知識交換機構を実装している。
論文 参考訳(メタデータ) (2020-03-24T11:03:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。