Approximate Algorithms For $k$-Sparse Wasserstein Barycenter With Outliers
- URL: http://arxiv.org/abs/2404.13401v1
- Date: Sat, 20 Apr 2024 15:01:35 GMT
- Title: Approximate Algorithms For $k$-Sparse Wasserstein Barycenter With Outliers
- Authors: Qingyuan Yang, Hu Ding,
- Abstract summary: We study the $k$-sparse Wasserstein Barycenter problem in the presence of outliers.
Existing WB algorithms cannot be directly extended to handle the case with outliers.
We propose a clustering based LP method that yields constant approximation factor for the $k$-sparse WB with outliers problem.
- Score: 10.259254824702555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wasserstein Barycenter (WB) is one of the most fundamental optimization problems in optimal transportation. Given a set of distributions, the goal of WB is to find a new distribution that minimizes the average Wasserstein distance to them. The problem becomes even harder if we restrict the solution to be ``$k$-sparse''. In this paper, we study the $k$-sparse WB problem in the presence of outliers, which is a more practical setting since real-world data often contains noise. Existing WB algorithms cannot be directly extended to handle the case with outliers, and thus it is urgently needed to develop some novel ideas. First, we investigate the relation between $k$-sparse WB with outliers and the clustering (with outliers) problems. In particular, we propose a clustering based LP method that yields constant approximation factor for the $k$-sparse WB with outliers problem. Further, we utilize the coreset technique to achieve the $(1+\epsilon)$-approximation factor for any $\epsilon>0$, if the dimensionality is not high. Finally, we conduct the experiments for our proposed algorithms and illustrate their efficiencies in practice.
Related papers
- Relax and Merge: A Simple Yet Effective Framework for Solving Fair $k$-Means and $k$-sparse Wasserstein Barycenter Problems [8.74967598360817]
Given a dataset comprising several groups, the fairness constraint requires that each cluster should contain a proportion of points from each group.
We propose a novel Relax and Merge'' framework, where $rho$ is the approximate ratio of an off-the-shelf vanilla $k$-means algorithm.
If equipped with a PTAS of $k$-means, our solution can achieve an approximation ratio of $(5+O(epsilon))$ with only a slight violation of the fairness constraints.
arXiv Detail & Related papers (2024-11-02T02:50:12Z) - Estimating Barycenters of Distributions with Neural Optimal Transport [93.28746685008093]
We propose a new scalable approach for solving the Wasserstein barycenter problem.
Our methodology is based on the recent Neural OT solver.
We also establish theoretical error bounds for our proposed approach.
arXiv Detail & Related papers (2024-02-06T09:17:07Z) - On Robust Wasserstein Barycenter: The Model and Algorithm [12.95062444722496]
We focus on improving the computational efficiency of two types of robust Wasserstein barycenter problem (RWB): fixed-support RWB (fixed-RWB) and free-support RWB (free-RWB)
Firstly, we improve efficiency through model reducing; we reduce RWB as an augmented Wasserstein barycenter problem, which works for both fixed-RWB and free-RWB.
Next, by combining the model reducing and coreset techniques above, we propose an algorithm for free-RWB by updating the weights and locations alternatively.
arXiv Detail & Related papers (2023-12-25T16:20:32Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Randomized Greedy Algorithms and Composable Coreset for k-Center
Clustering with Outliers [11.546734084378683]
The presence of outliers can significantly increase the computational complexity.
Our idea is inspired by the greedy method, that was developed for solving the ordinary $k$-center clustering problem.
arXiv Detail & Related papers (2023-01-07T09:26:01Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Approximative Algorithms for Multi-Marginal Optimal Transport and
Free-Support Wasserstein Barycenters [0.0]
We present two algorithms to approximate the solution of multi-marginal optimal transport (MOT) with squared Euclidean costs for $N$ discrete probability measures.
They are fast, memory-efficient and easy to implement and can be used with any sparse OT solver as a black box.
arXiv Detail & Related papers (2022-02-02T10:59:54Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Consistent $k$-Median: Simpler, Better and Robust [20.692372082600972]
We show that a simple local-search based online algorithm can give a bicriteria constant approximation for the problem with $O(k2 log2 (nD))$ swaps of medians (recourse) in total.
When restricted to the problem without outliers, our algorithm is simpler, deterministic and gives better approximation ratio and recourse.
arXiv Detail & Related papers (2020-08-13T20:24:28Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.