Distributional Principal Autoencoders
- URL: http://arxiv.org/abs/2404.13649v1
- Date: Sun, 21 Apr 2024 12:52:04 GMT
- Title: Distributional Principal Autoencoders
- Authors: Xinwei Shen, Nicolai Meinshausen,
- Abstract summary: Dimension reduction techniques usually lose information in the sense that reconstructed data are not identical to the original data.
We propose Distributional Principal Autoencoder (DPA) that consists of an encoder that maps high-dimensional data to low-dimensional latent variables.
For reconstructing data, the DPA decoder aims to match the conditional distribution of all data that are mapped to a certain latent value.
- Score: 2.519266955671697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimension reduction techniques usually lose information in the sense that reconstructed data are not identical to the original data. However, we argue that it is possible to have reconstructed data identically distributed as the original data, irrespective of the retained dimension or the specific mapping. This can be achieved by learning a distributional model that matches the conditional distribution of data given its low-dimensional latent variables. Motivated by this, we propose Distributional Principal Autoencoder (DPA) that consists of an encoder that maps high-dimensional data to low-dimensional latent variables and a decoder that maps the latent variables back to the data space. For reducing the dimension, the DPA encoder aims to minimise the unexplained variability of the data with an adaptive choice of the latent dimension. For reconstructing data, the DPA decoder aims to match the conditional distribution of all data that are mapped to a certain latent value, thus ensuring that the reconstructed data retains the original data distribution. Our numerical results on climate data, single-cell data, and image benchmarks demonstrate the practical feasibility and success of the approach in reconstructing the original distribution of the data. DPA embeddings are shown to preserve meaningful structures of data such as the seasonal cycle for precipitations and cell types for gene expression.
Related papers
- Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks [7.958528596692594]
We propose a novel framework called the latent Wasserstein GAN (LWGAN)
It fuses the Wasserstein auto-encoder and the Wasserstein GAN so that the intrinsic dimension of the data manifold can be adaptively learned.
We show that LWGAN is able to identify the correct intrinsic dimension under several scenarios.
arXiv Detail & Related papers (2024-09-27T01:25:22Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - DIRESA, a distance-preserving nonlinear dimension reduction technique based on regularized autoencoders [0.0]
In meteorology, finding similar weather patterns or analogs in historical datasets can be useful for data assimilation, forecasting, and postprocessing.
In climate science, analogs in historical and climate projection data are used for attribution and impact studies.
We propose a dimension reduction technique based on autoencoder (AE) neural networks to compress those datasets and perform the search in an interpretable, compressed latent space.
arXiv Detail & Related papers (2024-04-28T20:54:57Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - On the Size and Approximation Error of Distilled Sets [57.61696480305911]
We take a theoretical view on kernel ridge regression based methods of dataset distillation such as Kernel Inducing Points.
We prove that a small set of instances exists in the original input space such that its solution in the RFF space coincides with the solution of the original data.
A KRR solution can be generated using this distilled set of instances which gives an approximation towards the KRR solution optimized on the full input data.
arXiv Detail & Related papers (2023-05-23T14:37:43Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
We introduce a novel approach for solving dataset condensation problem by exploiting the regularity in a given dataset.
Instead of condensing the dataset directly in the original input space, we assume a generative process of the dataset with a set of learnable codes.
We experimentally show that our method achieves new state-of-the-art records by significant margins on various benchmark datasets.
arXiv Detail & Related papers (2022-08-21T18:14:08Z) - RENs: Relevance Encoding Networks [0.0]
This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality.
We show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.
arXiv Detail & Related papers (2022-05-25T21:53:48Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
Variational Autoencoder (VAE) and its variations are classic generative models by learning a low-dimensional latent representation to satisfy some prior distribution.
We propose to let the prior match the embedding distribution rather than imposing the latent variables to fit the prior.
arXiv Detail & Related papers (2020-09-23T09:33:24Z) - Learning a Deep Part-based Representation by Preserving Data
Distribution [21.13421736154956]
Unsupervised dimensionality reduction is one of the commonly used techniques in the field of high dimensional data recognition problems.
In this paper, by preserving the data distribution, a deep part-based representation can be learned, and the novel algorithm is called Distribution Preserving Network Embedding.
The experimental results on the real-world data sets show that the proposed algorithm has good performance in terms of cluster accuracy and AMI.
arXiv Detail & Related papers (2020-09-17T12:49:36Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.