Cumulative Hazard Function Based Efficient Multivariate Temporal Point Process Learning
- URL: http://arxiv.org/abs/2404.13663v2
- Date: Thu, 2 May 2024 02:58:13 GMT
- Title: Cumulative Hazard Function Based Efficient Multivariate Temporal Point Process Learning
- Authors: Bingqing Liu,
- Abstract summary: In this paper, we explore using neural networks to model a flexible but well-defined CHF.
We show that the proposed model achieves the state-of-the-art performance on data fitting and event prediction tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing temporal point process models are characterized by conditional intensity function. These models often require numerical approximation methods for likelihood evaluation, which potentially hurts their performance. By directly modelling the integral of the intensity function, i.e., the cumulative hazard function (CHF), the likelihood can be evaluated accurately, making it a promising approach. However, existing CHF-based methods are not well-defined, i.e., the mathematical constraints of CHF are not completely satisfied, leading to untrustworthy results. For multivariate temporal point process, most existing methods model intensity (or density, etc.) functions for each variate, limiting the scalability. In this paper, we explore using neural networks to model a flexible but well-defined CHF and learning the multivariate temporal point process with low parameter complexity. Experimental results on six datasets show that the proposed model achieves the state-of-the-art performance on data fitting and event prediction tasks while having significantly fewer parameters and memory usage than the strong competitors. The source code and data can be obtained from https://github.com/lbq8942/NPP.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
We construct a neural likelihood approximation that can be trained using unconditional simulation of the underlying model.
We demonstrate our method by performing inference on a number of ecological and epidemiological models.
arXiv Detail & Related papers (2023-10-19T07:51:39Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.