論文の概要: Reproducible data science over data lakes: replayable data pipelines with Bauplan and Nessie
- arxiv url: http://arxiv.org/abs/2404.13682v1
- Date: Sun, 21 Apr 2024 14:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 17:52:05.996319
- Title: Reproducible data science over data lakes: replayable data pipelines with Bauplan and Nessie
- Title(参考訳): データレイク上の再現可能なデータサイエンス:BauplanとNessieによる再生可能なデータパイプライン
- Authors: Jacopo Tagliabue, Ciro Greco,
- Abstract要約: 我々はNessieと共にクラウドランタイムを活用することにより、計算とデータ管理を分離するように設計されたシステムを導入する。
オブジェクトストレージ上にタイムトラベラとブランチのセマンティクスを提供する機能を示し、CLIコマンドで完全なパイプラインを提供する。
- 参考スコア(独自算出の注目度): 5.259526087073711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the Lakehouse architecture becomes more widespread, ensuring the reproducibility of data workloads over data lakes emerges as a crucial concern for data engineers. However, achieving reproducibility remains challenging. The size of data pipelines contributes to slow testing and iterations, while the intertwining of business logic and data management complicates debugging and increases error susceptibility. In this paper, we highlight recent advancements made at Bauplan in addressing this challenge. We introduce a system designed to decouple compute from data management, by leveraging a cloud runtime alongside Nessie, an open-source catalog with Git semantics. Demonstrating the system's capabilities, we showcase its ability to offer time-travel and branching semantics on top of object storage, and offer full pipeline reproducibility with a few CLI commands.
- Abstract(参考訳): Lakehouseアーキテクチャがより広く普及するにつれて、データレイクに対するデータワークロードの再現性を保証することが、データエンジニアにとって重要な関心事として現れます。
しかし、再現性の達成は依然として困難である。
データパイプラインのサイズは、遅いテストとイテレーションに寄与する一方、ビジネスロジックとデータ管理の相互運用は、デバッグを複雑にし、エラーの感受性を高める。
本稿では,この課題に対処する上で,Bauplanの最近の進歩に注目した。
我々は,Gitセマンティクスを備えたオープンソースカタログであるNessieとともに,クラウドランタイムを活用することにより,計算とデータ管理を分離するように設計されたシステムを紹介した。
システムの機能を実証して、オブジェクトストレージ上にタイムトラバーと分岐セマンティクスを提供する機能を示し、いくつかのCLIコマンドで完全なパイプライン再現性を提供します。
関連論文リスト
- Bauplan: zero-copy, scale-up FaaS for data pipelines [4.6797109107617105]
bauplanは、データ実践者向けに設計された、新しいFプログラミングモデルとサーバレスランタイムである。
bauplanを使用することで、ユーザはランタイム環境とともに、機能的なDAG(Directed Acyclic Graphs)を宣言的に定義することができる。
汎用性を減らし、データ認識を優先することで、バプランのパフォーマンスが向上し、データワークロードの開発者エクスペリエンスも向上していることを示す。
論文 参考訳(メタデータ) (2024-10-22T22:49:01Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - In-depth Analysis On Parallel Processing Patterns for High-Performance
Dataframes [0.0]
本稿では,分散データフレーム演算子の並列処理パターンと参照ランタイム実装であるCylonについて述べる。
本稿では,これらのパターンを評価するためのコストモデルを導入することで,初期概念を拡張している。
ORNL Summit スーパーコンピュータにおける Cylon の性能評価を行った。
論文 参考訳(メタデータ) (2023-07-03T23:11:03Z) - Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow [49.724842920942024]
金融、気象学、エネルギーといった産業は毎日大量のデータを生み出している。
本研究では,データ分析エージェントであるData-Copilotを提案する。
論文 参考訳(メタデータ) (2023-06-12T16:12:56Z) - Deep Lake: a Lakehouse for Deep Learning [0.0]
Deep Lakeは、Activeloopで開発されたディープラーニングアプリケーションのためのオープンソースのレイクハウスである。
本稿では,Activeloopで開発されたディープラーニングアプリケーションのためのオープンソースのレイクハウスであるDeep Lakeについて述べる。
論文 参考訳(メタデータ) (2022-09-22T05:04:09Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
Preprocessing Pipelines [77.45213180689952]
ディープラーニングにおける前処理パイプラインは、トレーニングプロセスを忙しくするための十分なデータスループットの提供を目的としている。
エンドツーエンドのディープラーニングパイプラインのためのデータセットを効率的に準備する新たな視点を導入する。
チューニングされていないシステムに比べてスループットが3倍から13倍に向上する。
論文 参考訳(メタデータ) (2022-02-17T14:31:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision
Datasets from 3D Scans [103.92680099373567]
本稿では,実世界の包括的3Dスキャンからマルチタスク視覚データセットをパラメトリックサンプリングし,レンダリングするパイプラインを提案する。
サンプリングパラメータを変更することで、生成されたデータセットを“ステア”して、特定の情報を強調することが可能になる。
生成されたスタータデータセットでトレーニングされた共通アーキテクチャは、複数の共通ビジョンタスクとベンチマークで最先端のパフォーマンスに達した。
論文 参考訳(メタデータ) (2021-10-11T04:21:46Z) - MLCask: Efficient Management of Component Evolution in Collaborative
Data Analytics Pipelines [29.999324319722508]
マシンラーニングパイプラインのデプロイ時に発生する2つの大きな課題に対処し、エンドツーエンド分析システムMLCaskのバージョニング設計で対処する。
我々は,再利用可能な履歴記録とパイプライン互換性情報を用いて,パイプライン探索木を刈り取ることで,メートル法駆動のマージ操作を定義し,高速化する。
MLCaskの有効性は、いくつかの実世界の展開事例に関する広範な研究を通じて評価される。
論文 参考訳(メタデータ) (2020-10-17T13:34:48Z) - A Big Data Lake for Multilevel Streaming Analytics [0.4640835690336652]
本稿では,データレイクと呼ばれるデータストレージアーキテクチャにおいて,高ボリューム,速度,多種多様なデータを生の形式で保存することに焦点を当てる。
データレイクの開発に使用できるさまざまなオープンソースと商用プラットフォームについて議論し、比較する。
データストリームの取り込み、ステージング、マルチレベルストリーミング分析のための実世界のデータレイク開発ユースケースを提案する。
論文 参考訳(メタデータ) (2020-09-25T19:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。