Numerical evidence for a bipartite pure state entanglement witness from approximate analytical diagonalization
- URL: http://arxiv.org/abs/2404.13725v1
- Date: Sun, 21 Apr 2024 17:51:05 GMT
- Title: Numerical evidence for a bipartite pure state entanglement witness from approximate analytical diagonalization
- Authors: Paul M. Alsing, Richard J. Birrittella,
- Abstract summary: We show numerical evidence for a bipartite $dtimes d$ pure state entanglement witness.
We relate this entanglement witness to the Log Negativity.
We show that the Log Negativity for this approximate formula is exact on the class of pure state decompositions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We show numerical evidence for a bipartite $d\times d$ pure state entanglement witness that is readily calculated from the wavefunction coefficients directly, without the need for the numerical computation of eigenvalues. This is accomplished by using an approximate analytic diagonalization of the bipartite state that captures dominant contributions to the negativity of the partially transposed state. We relate this entanglement witness to the Log Negativity, and show that it exactly agrees with it for the class of pure states whose quantum amplitudes form a positive Hermitian matrix. In this case, the Log Negativity is given by the negative logarithm of the purity of the amplitudes consider as a density matrix. In other cases, the witness forms a lower bound to the exact, numerically computed Log Negativity. The formula for the approximate Log Negativity achieves equality with the exact Log Negativity for the case of an arbitrary pure state of two qubits, which we show analytically. We compare these results to a witness of entanglement given by the linear entropy. Finally, we explore an attempt to extend these pure state results to mixed states. We show that the Log Negativity for this approximate formula is exact on the class of pure state decompositions for which the quantum amplitudes of each pure state form a positive Hermitian matrix.
Related papers
- Joint State-Channel Decoupling and One-Shot Quantum Coding Theorem [16.05946478325466]
We propose a joint state-channel decoupling approach to obtain a one-shot error exponent bound without smoothing.
We establish a one-shot error exponent bound for quantum channel coding given by a sandwiched R'enyi coherent information.
arXiv Detail & Related papers (2024-09-23T15:59:16Z) - Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Entanglement negativity between separated regions in quantum critical systems [0.0]
We study the entanglement between disjoint subregions in quantum critical systems through the lens of the logarithmic negativity.
At small separations, the logarithmic negativity is big and displays universal behavior, but we show non-perturbatively that it decays faster than any power at large separations.
The corresponding absence of distillable entanglement at large separations generalizes the 1d result, and indicates that quantum critical groundstates do not possess long-range bipartite entanglement, at least for bosons.
arXiv Detail & Related papers (2023-10-23T18:20:29Z) - Nonlocal PDEs and Quantum Optics: Bound States and Resonances [0.0]
We study a nonlinear eigenproblem for a system of nonlocal partial differential equations.
Bound states correspond to negative eigenvalues and resonances to eigenvalues with positive real parts.
arXiv Detail & Related papers (2023-06-17T21:51:40Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Exact Community Recovery over Signed Graphs [27.2776492470422]
We study the problem of community recovery over signed graphs with two equal-sized communities.
Our approach is based on the maximum likelihood estimation (MLE) of the signed block model.
It is shown that in the logarithmic degree regime, the proposed algorithm can exactly recover the underlying communities in nearly-linear time.
arXiv Detail & Related papers (2022-02-22T05:03:25Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Anyonic Partial Transpose I: Quantum Information Aspects [0.0]
A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose.
The corresponding entanglement measure is called the logarithmic negativity.
We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states.
arXiv Detail & Related papers (2020-12-03T19:26:35Z) - Entanglement negativity spectrum of random mixed states: A diagrammatic
approach [0.34410212782758054]
entanglement properties of random pure states are relevant to a variety of problems ranging from chaotic quantum dynamics to black hole physics.
In this paper, we generalize this setup to random mixed states by coupling the system to a bath and use the partial transpose to study their entanglement properties.
arXiv Detail & Related papers (2020-11-02T19:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.