Anchor-aware Deep Metric Learning for Audio-visual Retrieval
- URL: http://arxiv.org/abs/2404.13789v1
- Date: Sun, 21 Apr 2024 22:44:44 GMT
- Title: Anchor-aware Deep Metric Learning for Audio-visual Retrieval
- Authors: Donghuo Zeng, Yanan Wang, Kazushi Ikeda, Yi Yu,
- Abstract summary: Metric learning aims at capturing the underlying data structure and enhancing the performance of tasks like audio-visual cross-modal retrieval (AV-CMR)
Recent works employ sampling methods to select impactful data points from the embedding space during training.
However, the model training fails to fully explore the space due to the scarcity of training data points.
We propose an innovative Anchor-aware Deep Metric Learning (AADML) method to address this challenge.
- Score: 11.675472891647255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metric learning minimizes the gap between similar (positive) pairs of data points and increases the separation of dissimilar (negative) pairs, aiming at capturing the underlying data structure and enhancing the performance of tasks like audio-visual cross-modal retrieval (AV-CMR). Recent works employ sampling methods to select impactful data points from the embedding space during training. However, the model training fails to fully explore the space due to the scarcity of training data points, resulting in an incomplete representation of the overall positive and negative distributions. In this paper, we propose an innovative Anchor-aware Deep Metric Learning (AADML) method to address this challenge by uncovering the underlying correlations among existing data points, which enhances the quality of the shared embedding space. Specifically, our method establishes a correlation graph-based manifold structure by considering the dependencies between each sample as the anchor and its semantically similar samples. Through dynamic weighting of the correlations within this underlying manifold structure using an attention-driven mechanism, Anchor Awareness (AA) scores are obtained for each anchor. These AA scores serve as data proxies to compute relative distances in metric learning approaches. Extensive experiments conducted on two audio-visual benchmark datasets demonstrate the effectiveness of our proposed AADML method, significantly surpassing state-of-the-art models. Furthermore, we investigate the integration of AA proxies with various metric learning methods, further highlighting the efficacy of our approach.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Relation Modeling and Distillation for Learning with Noisy Labels [4.556974104115929]
This paper proposes a relation modeling and distillation framework that models inter-sample relationships via self-supervised learning.
The proposed framework can learn discriminative representations for noisy data, which results in superior performance than the existing methods.
arXiv Detail & Related papers (2024-05-30T01:47:27Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
Relation extraction has been particularly challenging in low-resource scenarios and domains.
Recent literature has tackled low-resource RE by self-supervised learning.
We propose to pretrain and finetune the RE model using consistent objectives of contrastive learning.
arXiv Detail & Related papers (2022-12-21T07:30:22Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.