論文の概要: Universal Fingerprint Generation: Controllable Diffusion Model with Multimodal Conditions
- arxiv url: http://arxiv.org/abs/2404.13791v1
- Date: Sun, 21 Apr 2024 23:01:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:36:05.722637
- Title: Universal Fingerprint Generation: Controllable Diffusion Model with Multimodal Conditions
- Title(参考訳): ユニバーサルフィンガープリント生成:マルチモーダル条件による制御可能な拡散モデル
- Authors: Steven A. Grosz, Anil K. Jain,
- Abstract要約: GenPrintは、アイデンティティを維持しながら、さまざまなタイプの指紋画像を生成するためのフレームワークである。
GenPrintはトレーニングデータセットのみからスタイル特性を複製することに限定されていない。
結果は、生成した画像のアイデンティティ保存、説明可能な制御、普遍性の観点から、GenPrintの利点を実証する。
- 参考スコア(独自算出の注目度): 25.738682467090335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The utilization of synthetic data for fingerprint recognition has garnered increased attention due to its potential to alleviate privacy concerns surrounding sensitive biometric data. However, current methods for generating fingerprints have limitations in creating impressions of the same finger with useful intra-class variations. To tackle this challenge, we present GenPrint, a framework to produce fingerprint images of various types while maintaining identity and offering humanly understandable control over different appearance factors such as fingerprint class, acquisition type, sensor device, and quality level. Unlike previous fingerprint generation approaches, GenPrint is not confined to replicating style characteristics from the training dataset alone: it enables the generation of novel styles from unseen devices without requiring additional fine-tuning. To accomplish these objectives, we developed GenPrint using latent diffusion models with multimodal conditions (text and image) for consistent generation of style and identity. Our experiments leverage a variety of publicly available datasets for training and evaluation. Results demonstrate the benefits of GenPrint in terms of identity preservation, explainable control, and universality of generated images. Importantly, the GenPrint-generated images yield comparable or even superior accuracy to models trained solely on real data and further enhances performance when augmenting the diversity of existing real fingerprint datasets.
- Abstract(参考訳): 指紋認証のための合成データの利用は、機密バイオメトリックスデータを取り巻くプライバシー上の懸念を和らげるため、注目を集めている。
しかし、現在の指紋生成法は、クラス内で有用な差分を持つ同じ指の印象を生み出すのに限界がある。
この課題に対処するために、指紋分類、取得タイプ、センサデバイス、品質レベルなどの異なる外観要因を人為的に理解可能な制御を行うとともに、アイデンティティを維持しつつ、さまざまなタイプの指紋画像を生成するためのフレームワークであるGenPrintを提案する。
これまでの指紋生成アプローチとは異なり、GenPrintはトレーニングデータセットのみからスタイル特性を複製することに限定されていない。
これらの目的を達成するため、我々は多モード条件(テキストと画像)を持つ潜在拡散モデルを用いてGenPrintを開発し、スタイルとアイデンティティを一貫した生成を行った。
私たちの実験では、トレーニングと評価のために、さまざまな公開データセットを活用しています。
結果は、生成した画像のアイデンティティ保存、説明可能な制御、普遍性の観点から、GenPrintの利点を実証する。
重要なのは、GenPrintの生成したイメージは、実際のデータのみに基づいてトレーニングされたモデルと同等またはそれ以上の精度で、既存の実際の指紋データセットの多様性を拡大する際のパフォーマンスをさらに向上させることだ。
関連論文リスト
- Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques [0.44739156031315924]
我々は様々な方法でノイズからライブ指紋を生成し、画像翻訳技術を用いてライブ指紋画像をスプーフに変換する。
我々はFr'echet Inception Distance (FID) とFalse Acceptance Rate (FAR) によって生成されたライブ指紋画像の多様性と現実性を評価する。
論文 参考訳(メタデータ) (2024-03-20T18:36:30Z) - DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models [0.0]
本研究では,Denoising Diffusion Probabilistic Models (DDPMs) を用いた合成指紋画像の生成について検討する。
以上の結果から,DiffFingerは高品質なトレーニングデータセットと競合するだけでなく,よりリッチなバイオメトリックデータも提供し,真から生への多様性を反映していることがわかった。
論文 参考訳(メタデータ) (2024-03-15T14:34:29Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
画像生成フレームワークであるFPGAN-Controlについて述べる。
指紋の識別と外観特性の絡み合いを助長する新規な外観損失を導入する。
FPGAN-Controlのメリットを,アイデンティティレベル,外観制御の程度,合成ドメイン間ギャップの低さの観点から定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2023-10-29T14:30:01Z) - Synthetic Latent Fingerprint Generation Using Style Transfer [6.530917936319386]
そこで我々は,現実的な潜伏指紋を合成するために,スタイル転送と画像ブレンディングを用いたシンプルで効果的なアプローチを提案する。
評価基準と実験により,生成した合成潜伏指紋は,入力された接触指紋から識別情報を保存していることが示された。
論文 参考訳(メタデータ) (2023-09-27T15:47:00Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
本稿では,GAN生成画像の独自の隆起特性と生成アーティファクトを組み合わせた指紋画像に対する最初の深部偽造検出手法を提案する。
提案手法は,低複雑性で有効かつ堅牢である。
論文 参考訳(メタデータ) (2023-08-18T04:05:18Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
本稿では,StyleGan2アーキテクチャに基づく新しい指紋合成・再構成フレームワークを提案する。
また,生成した指紋の属性を同一性を保ちながら修正する計算手法も提案する。
提案手法は, 指紋合成と復元の両面において, 現代的手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-01-17T00:18:00Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Random Network Distillation as a Diversity Metric for Both Image and
Text Generation [62.13444904851029]
我々は、どんな種類のデータにも、どんな種類のデータにも、自然にも適用できる新しい多様性指標を開発した。
私たちはこのメトリクスを画像とテキストの両方で検証し、デプロイします。
論文 参考訳(メタデータ) (2020-10-13T22:03:52Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。