Improving Group Robustness on Spurious Correlation Requires Preciser Group Inference
- URL: http://arxiv.org/abs/2404.13815v2
- Date: Tue, 4 Jun 2024 02:25:52 GMT
- Title: Improving Group Robustness on Spurious Correlation Requires Preciser Group Inference
- Authors: Yujin Han, Difan Zou,
- Abstract summary: Standard empirical risk (ERM) models may prioritize learning spurious correlations between spurious features and true labels, leading to poor accuracy on groups where these correlations do not hold.
We propose GIC, a novel method that accurately infers group labels, resulting in improved worst-group performance.
- Score: 15.874604623294427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard empirical risk minimization (ERM) models may prioritize learning spurious correlations between spurious features and true labels, leading to poor accuracy on groups where these correlations do not hold. Mitigating this issue often requires expensive spurious attribute (group) labels or relies on trained ERM models to infer group labels when group information is unavailable. However, the significant performance gap in worst-group accuracy between using pseudo group labels and using oracle group labels inspires us to consider further improving group robustness through preciser group inference. Therefore, we propose GIC, a novel method that accurately infers group labels, resulting in improved worst-group performance. GIC trains a spurious attribute classifier based on two key properties of spurious correlations: (1) high correlation between spurious attributes and true labels, and (2) variability in this correlation between datasets with different group distributions. Empirical studies on multiple datasets demonstrate the effectiveness of GIC in inferring group labels, and combining GIC with various downstream invariant learning methods improves worst-group accuracy, showcasing its powerful flexibility. Additionally, through analyzing the misclassifications in GIC, we identify an interesting phenomenon called semantic consistency, which may contribute to better decoupling the association between spurious attributes and labels, thereby mitigating spurious correlation. The code for GIC is available at https://github.com/yujinhanml/GIC.
Related papers
- Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
Empirical Risk Minimization (ERM) models tend to rely on attributes that have high spurious correlation with the target.
This can degrade the performance on underrepresented (or'minority') groups that lack these attributes.
We propose Environment-based Validation and Loss-based Sampling (EVaLS) to enhance robustness to spurious correlation.
arXiv Detail & Related papers (2024-10-07T08:17:44Z) - AGRO: Adversarial Discovery of Error-prone groups for Robust
Optimization [109.91265884632239]
Group distributionally robust optimization (G-DRO) can minimize the worst-case loss over a set of pre-defined groups over training data.
We propose AGRO -- Adversarial Group discovery for Distributionally Robust Optimization.
AGRO results in 8% higher model performance on average on known worst-groups, compared to prior group discovery approaches.
arXiv Detail & Related papers (2022-12-02T00:57:03Z) - Take One Gram of Neural Features, Get Enhanced Group Robustness [23.541213868620837]
Predictive performance of machine learning models trained with empirical risk minimization can degrade considerably under distribution shifts.
We propose to partition the training dataset into groups based on Gram matrices of features extracted by an identification'' model.
Our approach not only improves group robustness over ERM but also outperforms all recent baselines.
arXiv Detail & Related papers (2022-08-26T12:34:55Z) - Correct-N-Contrast: A Contrastive Approach for Improving Robustness to
Spurious Correlations [59.24031936150582]
Spurious correlations pose a major challenge for robust machine learning.
Models trained with empirical risk minimization (ERM) may learn to rely on correlations between class labels and spurious attributes.
We propose Correct-N-Contrast (CNC), a contrastive approach to directly learn representations robust to spurious correlations.
arXiv Detail & Related papers (2022-03-03T05:03:28Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
Standard training via empirical risk minimization can produce models that achieve high accuracy on average but low accuracy on certain groups.
Prior approaches that achieve high worst-group accuracy, like group distributionally robust optimization (group DRO) require expensive group annotations for each training point.
We propose a simple two-stage approach, JTT, that first trains a standard ERM model for several epochs, and then trains a second model that upweights the training examples that the first model misclassified.
arXiv Detail & Related papers (2021-07-19T17:52:32Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Evolving Multi-label Classification Rules by Exploiting High-order Label
Correlation [2.9822184411723645]
In multi-label classification tasks, each problem instance is associated with multiple classes simultaneously.
The correlation between labels can be exploited at different levels such as capturing the pair-wise correlation or exploiting the higher-order correlations.
This paper aims at exploiting the high-order label correlation within subsets of labels using a supervised learning classifier system.
arXiv Detail & Related papers (2020-07-22T18:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.