論文の概要: Distributional Black-Box Model Inversion Attack with Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.13860v1
- Date: Mon, 22 Apr 2024 04:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:26:21.389552
- Title: Distributional Black-Box Model Inversion Attack with Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習を用いた分散ブラックボックスモデルインバージョンアタック
- Authors: Huan Bao, Kaimin Wei, Yongdong Wu, Jin Qian, Robert H. Deng,
- Abstract要約: 本稿では,ターゲットのプライバシデータを検索する確率的潜在空間を構築することで,DBB-MI(Distributedal Black-Box Model Inversion)攻撃を提案する。
潜在確率分布は、潜在空間におけるターゲットプライバシデータと密接に一致しているため、回収されたデータは、ターゲットモデルのトレーニングサンプルのプライバシを著しくリークする。
多様なデータセットやネットワーク上で行った実験から,現在のDBB-MIは,攻撃精度,Kアレスト近傍の特徴距離,Pak Signal-to-Noise比よりも優れた性能を示している。
- 参考スコア(独自算出の注目度): 19.200221582814518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Model Inversion (MI) attack based on Generative Adversarial Networks (GAN) aims to recover the private training data from complex deep learning models by searching codes in the latent space. However, they merely search a deterministic latent space such that the found latent code is usually suboptimal. In addition, the existing distributional MI schemes assume that an attacker can access the structures and parameters of the target model, which is not always viable in practice. To overcome the above shortcomings, this paper proposes a novel Distributional Black-Box Model Inversion (DBB-MI) attack by constructing the probabilistic latent space for searching the target privacy data. Specifically, DBB-MI does not need the target model parameters or specialized GAN training. Instead, it finds the latent probability distribution by combining the output of the target model with multi-agent reinforcement learning techniques. Then, it randomly chooses latent codes from the latent probability distribution for recovering the private data. As the latent probability distribution closely aligns with the target privacy data in latent space, the recovered data will leak the privacy of training samples of the target model significantly. Abundant experiments conducted on diverse datasets and networks show that the present DBB-MI has better performance than state-of-the-art in attack accuracy, K-nearest neighbor feature distance, and Peak Signal-to-Noise Ratio.
- Abstract(参考訳): GAN(Generative Adversarial Networks)に基づくモデルインバージョン(MI)攻撃は、潜時空間のコード検索によって複雑なディープラーニングモデルからプライベートトレーニングデータを復元することを目的としている。
しかし、それらは単に決定論的潜在空間を探索するだけであり、発見された潜在コードは、通常、準最適である。
さらに、既存の分散MIスキームでは、攻撃者がターゲットモデルの構造やパラメータにアクセスできると仮定している。
上記の欠点を克服するために、ターゲットのプライバシーデータを検索する確率的潜在空間を構築することにより、新しい分散ブラックボックスモデルインバージョン(DBB-MI)攻撃を提案する。
具体的には、DBB-MIはターゲットモデルパラメータや特別なGANトレーニングを必要としない。
その代わりに、ターゲットモデルの出力とマルチエージェント強化学習技術を組み合わせることで、潜在確率分布を求める。
そして、プライベートデータを復元するための潜時確率分布から潜時符号をランダムに選択する。
潜在確率分布は、潜在空間におけるターゲットのプライバシデータと密接に一致しているため、回収されたデータは、ターゲットモデルのトレーニングサンプルのプライバシを著しくリークする。
多様なデータセットやネットワーク上で行った実験により,現在のDBB-MIは,攻撃精度,K-アレスト近傍の特徴距離,ピーク信号対雑音比よりも優れた性能を示した。
関連論文リスト
- Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Breaking the Black-Box: Confidence-Guided Model Inversion Attack for
Distribution Shift [0.46040036610482665]
モデル反転攻撃(MIA)は、ターゲットクラスの特性を反映した合成画像を生成することにより、ターゲット分類器のプライベートトレーニングデータを推論しようとする。
これまでの研究はターゲットモデルへの完全なアクセスに依存してきたが、現実のシナリオでは実用的ではない。
本稿では,CG-MIと呼ばれるtextbfConfidence-textbfGuided textbfModel textbfInversion攻撃法を提案する。
論文 参考訳(メタデータ) (2024-02-28T03:47:17Z) - Latent Code Augmentation Based on Stable Diffusion for Data-free Substitute Attacks [47.84143701817491]
ブラックボックス代替攻撃では対象モデルのトレーニングデータが利用できないため、近年のスキームではGANを用いて代替モデルのトレーニングデータを生成する。
本稿では,SD(Stable Diffusion)に基づくデータフリー代替攻撃方式を提案する。
論文 参考訳(メタデータ) (2023-07-24T15:10:22Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
ソースフリードメイン適応(SFDA)は、事前訓練されたソースモデルのみを使用することで、未ラベルのターゲットデータセットに分類器を適応させることを目的としている。
本稿では、ソースモデル予測の不確実性を定量化し、ターゲット適応の導出に利用することを提案する。
論文 参考訳(メタデータ) (2022-08-16T08:03:30Z) - Transferring model structure in Bayesian transfer learning for Gaussian
process regression [1.370633147306388]
本稿では、転送源分布上の目標確率分布を条件付けるタスクを定義する。
この最適意思決定問題を解決するために、完全な確率的設計が採用されている。
ソースのより高いモーメントを転送することで、ターゲットは信頼できないソース知識を拒否することができる。
論文 参考訳(メタデータ) (2021-01-18T05:28:02Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。