論文の概要: FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge
- arxiv url: http://arxiv.org/abs/2404.13872v2
- Date: Mon, 6 May 2024 09:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 22:46:58.352315
- Title: FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge
- Title(参考訳): FreqBlender: 周波数知識のブレンディングによるディープフェイク検出の強化
- Authors: Hanzhe Li, Yuezun Li, Jiaran Zhou, Bin Li, Junyu Dong,
- Abstract要約: 既存の方法では、色空間内で実際の顔と偽の顔とを混ぜ合わせて合成偽の顔を生成するのが一般的である。
本稿では,周波数知識をブレンドして擬似フェイク顔を生成する新しい手法であるem FreqBlenderを紹介する。
実験により,DeepFake検出の高速化に本手法の有効性が示され,他の手法のプラグ・アンド・プレイ戦略の可能性が確認された。
- 参考スコア(独自算出の注目度): 32.81674814838492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating synthetic fake faces, known as pseudo-fake faces, is an effective way to improve the generalization of DeepFake detection. Existing methods typically generate these faces by blending real or fake faces in color space. While these methods have shown promise, they overlook the simulation of frequency distribution in pseudo-fake faces, limiting the learning of generic forgery traces in-depth. To address this, this paper introduces {\em FreqBlender}, a new method that can generate pseudo-fake faces by blending frequency knowledge. Specifically, we investigate the major frequency components and propose a Frequency Parsing Network to adaptively partition frequency components related to forgery traces. Then we blend this frequency knowledge from fake faces into real faces to generate pseudo-fake faces. Since there is no ground truth for frequency components, we describe a dedicated training strategy by leveraging the inner correlations among different frequency knowledge to instruct the learning process. Experimental results demonstrate the effectiveness of our method in enhancing DeepFake detection, making it a potential plug-and-play strategy for other methods.
- Abstract(参考訳): 擬似フェイク顔と呼ばれる合成偽顔を生成することは、ディープフェイク検出の一般化を改善する効果的な方法である。
既存の方法では、色空間に実際の顔と偽の顔とを混ぜてこれらの顔を生成するのが一般的である。
これらの手法は将来性を示しているが、擬似フェイク顔における周波数分布のシミュレーションを見落とし、奥行きの一般的な偽跡の学習を制限する。
そこで本研究では,周波数知識をブレンドして擬似フェイク顔を生成する新しい手法である {\em FreqBlender} を紹介する。
具体的には、主要な周波数成分を調査し、フォージェリートレースに関連する周波数成分を適応的に分割する周波数パーシングネットワークを提案する。
そして、この周波数知識を偽の顔から実際の顔にブレンドし、偽の偽の顔を生成する。
周波数成分には基礎的な真理が存在しないため、異なる周波数知識の内的相関を利用して学習過程を指導することで、専用の学習戦略を記述する。
実験により,DeepFake検出の高速化に本手法の有効性が示され,他の手法のプラグ・アンド・プレイ戦略の可能性が確認された。
関連論文リスト
- Deepfake Detection without Deepfakes: Generalization via Synthetic Frequency Patterns Injection [12.33030785907372]
ディープフェイク検出器は、通常、大量のプリステインと生成された画像に基づいて訓練される。
ディープフェイク検出器は、トレーニング中に遭遇した方法によって生成されたディープフェイクを識別するのが得意だが、未知のテクニックによって生成されたディープフェイクと競合する。
本稿では,ディープフェイク検出器の一般化能力の向上を目的とした学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T10:33:10Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
ディープフェイク技術の出現は、個人のプライバシーと公共の安全に脅威をもたらすため、社会的な問題となっている。
十分な偽の顔を集めることはほぼ不可能であり、既存の検出器があらゆる種類の操作に一般化することは困難である。
本稿では,大規模な実顔データセットから一般表現を学習することを目的としたリアルフェイスファウンデーション表現学習(RFFR)を提案する。
論文 参考訳(メタデータ) (2023-03-15T08:27:56Z) - Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery
Detection [118.37239586697139]
LipForensicsは、操作の一般化と様々な歪みに耐えられる検出アプローチである。
視覚的音声認識(リリーディング)を行うために、初めて時間ネットワークを事前訓練する。
その後、リアルタイムおよび偽造データの固定された口埋め込みに時間的ネットワークを微調整し、低レベルな操作固有のアーティファクトに過度に適合することなく、口の動きに基づいて偽のビデオを検出する。
論文 参考訳(メタデータ) (2020-12-14T15:53:56Z) - Deep Detection for Face Manipulation [10.551455590390418]
顔の操作を検出する深層学習手法を提案する。
特徴抽出と二項分類の2段階からなる。
その結果,ほとんどの場合,最先端技術よりも優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-09-13T06:48:34Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
単一画像における顔のスワップやその他のアイデンティティ操作を検出する手法を提案する。
提案手法は, (i) 厳密なセマンティックセグメンテーションによって境界付けられた顔領域を考慮した顔識別ネットワークと, (ii) 顔コンテキストを考慮したコンテキスト認識ネットワークの2つのネットワークを含む。
本稿では,2つのネットワークからの認識信号を用いて,そのような不一致を検出する手法について述べる。
提案手法は,FaceForensics++,Celeb-DF-v2,DFDCベンチマークを用いて顔検出を行い,未知の手法で生成した偽物の検出を一般化する。
論文 参考訳(メタデータ) (2020-08-27T17:04:46Z) - One-Shot GAN Generated Fake Face Detection [3.3707422585608953]
本稿では,汎用的なワンショットGAN生成顔検出手法を提案する。
提案手法は,シーン理解モデルを用いて顔から文脈外オブジェクトを抽出する。
実験の結果,文脈外の特徴の観点から,偽の顔と現実の顔とを識別できることが判明した。
論文 参考訳(メタデータ) (2020-03-27T05:51:14Z) - FakeLocator: Robust Localization of GAN-Based Face Manipulations [19.233930372590226]
本稿では,FakeLocatorと呼ばれる新しいアプローチを提案する。
これは、GANベースのフェイクローカライゼーション問題をグレースケールのフェイクネスマップで解決する最初の試みである。
人気の高いFaceForensics++,DFFDデータセット,および7種類の最先端のGANベースの顔生成手法による実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-01-27T06:15:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。