Information Re-Organization Improves Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2404.13985v2
- Date: Fri, 24 May 2024 07:28:49 GMT
- Title: Information Re-Organization Improves Reasoning in Large Language Models
- Authors: Xiaoxia Cheng, Zeqi Tan, Wei Xue, Weiming Lu,
- Abstract summary: We propose an information re-organization (InfoRE) method to enhance the reasoning ability of large language models (LLMs)
Our method involves extracting logical relationships from the contextual content, such as documents or paragraphs, and subsequently pruning redundant content to minimize noise.
To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks.
- Score: 22.2946033364035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the reasoning capabilities of large language models (LLMs) has attracted considerable interest. Recent approaches primarily focus on improving the reasoning process to yield a more precise final answer. However, in scenarios involving contextually aware reasoning, these methods neglect the importance of first identifying logical relationships from the context before proceeding with the reasoning. This oversight could lead to a superficial understanding and interaction with the context, potentially undermining the quality and reliability of the reasoning outcomes. In this paper, we propose an information re-organization (InfoRE) method before proceeding with the reasoning to enhance the reasoning ability of LLMs. Our re-organization method involves initially extracting logical relationships from the contextual content, such as documents or paragraphs, and subsequently pruning redundant content to minimize noise. Then, we utilize the re-organized information in the reasoning process. This enables LLMs to deeply understand the contextual content by clearly perceiving these logical relationships, while also ensuring high-quality responses by eliminating potential noise. To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks. Using only a zero-shot setting, our method achieves an average absolute improvement of 4% across all tasks, highlighting its potential to improve the reasoning performance of LLMs. Our source code is available at https://github.com/hustcxx/InfoRE.
Related papers
- Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
Causal reasoning is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world.
Large language models (LLMs) can generate rationales for their outputs, but their ability to reliably perform causal reasoning remains uncertain.
arXiv Detail & Related papers (2024-10-22T04:18:19Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains.
We use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities.
arXiv Detail & Related papers (2024-10-11T19:22:57Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
Event relation extraction is a challenging task that demands thorough semantic understanding and rigorous logical reasoning.
In this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in understanding and applying event relation logic.
Our study reveals that LLMs are not logically consistent reasoners, which results in their suboptimal performance on tasks that need rigorous reasoning.
arXiv Detail & Related papers (2023-10-13T14:53:06Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.