Interleaved Reasoning for Large Language Models via Reinforcement Learning
- URL: http://arxiv.org/abs/2505.19640v1
- Date: Mon, 26 May 2025 07:58:17 GMT
- Title: Interleaved Reasoning for Large Language Models via Reinforcement Learning
- Authors: Roy Xie, David Qiu, Deepak Gopinath, Dong Lin, Yanchao Sun, Chong Wang, Saloni Potdar, Bhuwan Dhingra,
- Abstract summary: Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
- Score: 22.403928213802036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long chain-of-thought (CoT) significantly enhances large language models' (LLM) reasoning capabilities. However, the extensive reasoning traces lead to inefficiencies and an increased time-to-first-token (TTFT). We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions. We observe that models inherently possess the ability to perform interleaved reasoning, which can be further enhanced through RL. We introduce a simple yet effective rule-based reward to incentivize correct intermediate steps, which guides the policy model toward correct reasoning paths by leveraging intermediate signals generated during interleaved reasoning. Extensive experiments conducted across five diverse datasets and three RL algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent improvements over traditional think-answer reasoning, without requiring external tools. Specifically, our approach reduces TTFT by over 80% on average and improves up to 19.3% in Pass@1 accuracy. Furthermore, our method, trained solely on question answering and logical reasoning datasets, exhibits strong generalization ability to complex reasoning datasets such as MATH, GPQA, and MMLU. Additionally, we conduct in-depth analysis to reveal several valuable insights into conditional reward modeling.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling.<n>However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency.<n>We identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps.
arXiv Detail & Related papers (2025-05-28T06:24:45Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.<n>We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.<n>For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
This work revisits the dominant supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm for training Large Vision-Language Models (LVLMs)<n>We show that SFT can significantly undermine subsequent RL by inducing pseudo reasoning paths'' imitated from expert models.<n>We introduce VLAA-Thinking, a new multimodal dataset designed to support reasoning in LVLMs.
arXiv Detail & Related papers (2025-04-10T16:54:05Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Offline Reinforcement Learning for LLM Multi-Step Reasoning [15.687002884103537]
OREO (Offline Reasoning Optimization) is an offline reinforcement learning method for enhancing multi-step reasoning.<n>It reduces the need to collect pairwise data and enables better credit assignment.<n>It surpasses existing offline learning methods on multi-step reasoning benchmarks.
arXiv Detail & Related papers (2024-12-20T18:49:45Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.