論文の概要: Hybrid Ensemble-Based Travel Mode Prediction
- arxiv url: http://arxiv.org/abs/2404.14017v1
- Date: Mon, 22 Apr 2024 09:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:35:57.082687
- Title: Hybrid Ensemble-Based Travel Mode Prediction
- Title(参考訳): ハイブリッドアンサンブルに基づく旅行モード予測
- Authors: Paweł Golik, Maciej Grzenda, Elżbieta Sienkiewicz,
- Abstract要約: 旅行モード選択(TMC)予測は、市民が旅行ごとに異なる移動モードを選択する理由を理解するのに役立つ。
行動は時間とともに進化する可能性があるので、データ内の概念の漂流を検出するという問題にも直面する。
これは、潜在的な概念の漂流に対処するために適切な方法を使う必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Travel mode choice (TMC) prediction, which can be formulated as a classification task, helps in understanding what makes citizens choose different modes of transport for individual trips. This is also a major step towards fostering sustainable transportation. As behaviour may evolve over time, we also face the question of detecting concept drift in the data. This necessitates using appropriate methods to address potential concept drift. In particular, it is necessary to decide whether batch or stream mining methods should be used to develop periodically updated TMC models. To address the challenge of the development of TMC models, we propose the novel Incremental Ensemble of Batch and Stream Models (IEBSM) method aimed at adapting travel mode choice classifiers to concept drift possibly occurring in the data. It relies on the combination of drift detectors with batch learning and stream mining models. We compare it against batch and incremental learners, including methods relying on active drift detection. Experiments with varied travel mode data sets representing both city and country levels show that the IEBSM method both detects drift in travel mode data and successfully adapts the models to evolving travel mode choice data. The method has a higher rank than batch and stream learners.
- Abstract(参考訳): トラベルモード選択(TMC)予測は、分類タスクとして定式化することができ、市民が個々の旅行に対して異なる移動モードを選択する理由を理解するのに役立つ。
これはまた、持続可能な輸送を促進するための大きな一歩でもある。
行動は時間とともに進化する可能性があるので、データ内の概念の漂流を検出するという問題にも直面する。
これは、潜在的な概念の漂流に対処するために適切な方法を使う必要がある。
特に、定期的に更新されたTMCモデルを開発するために、バッチまたはストリームマイニング手法を使用するかを決定する必要がある。
TMCモデルの開発における課題に対処するため,本研究では,データに含まれる可能性のあるドリフトの概念に旅行モード選択型分類器を適用することを目的とした,バッチ・ストリーム・モデルのインクリメンタル・アンサンブル(IEBSM)手法を提案する。
ドリフト検出器とバッチ学習とストリームマイニングモデルの組み合わせに依存している。
アクティブなドリフト検出に依存する手法を含む,バッチや漸進的な学習者と比較する。
都市レベルと国レベルの両方を表す様々な旅行モードデータセットを用いて実験したところ、IEBSM法はどちらも移動モードデータのドリフトを検出し、進行モード選択データにモデルを適用することに成功した。
この手法はバッチやストリーム学習者よりも高いランクを持つ。
関連論文リスト
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Combining data from multiple sources for urban travel mode choice modelling [0.8437187555622164]
環境に優しいモードに重点を置いて、人々がいつ異なる旅行モードを使うかを予測する必要性が高まっている。
ますます多くのケースにおいて、機械学習手法は、応答性や進行性の特徴が与えられた走行モードの選択を予測するために使われる。
本稿では,データドキュメンテーションジャーニーと,トランスポートオプションを要約するために計算した特徴を組み合わせたデータ融合を行うソフトウェアプラットフォームのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-15T16:41:53Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
混合ガウスを将来の軌跡多様体に変換するためのフローベースモデルを提案する。
このモデルでは、多様な軌道パターンを生成する能力が向上している。
また,多様な,制御可能な,分布外のトラジェクトリを生成可能であることも実証した。
論文 参考訳(メタデータ) (2024-02-19T15:48:55Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
制御可能拡散軌道(CDT)と呼ばれる新しい軌道生成器を導入する。
CDTは、情報と社会的相互作用をトランスフォーマーに基づく条件記述拡散モデルに統合し、将来の軌跡の予測を導く。
マルチモーダル性を確保するため,直進,右折,左折などの軌道モードを指示する行動トークンを組み込んだ。
論文 参考訳(メタデータ) (2024-02-06T13:16:54Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Deep Inverse Reinforcement Learning for Route Choice Modeling [0.6853165736531939]
経路選択モデリングは交通計画と需要予測の基本的な課題である。
本研究では,リンクベース経路選択モデルのための一般的な逆強化学習(IRL)フレームワークを提案する。
中国上海のタクシーGPSデータに基づく実験結果から,提案モデルの性能改善を検証した。
論文 参考訳(メタデータ) (2022-06-18T06:33:06Z) - StableMoE: Stable Routing Strategy for Mixture of Experts [109.0602120199226]
Mixture-of-Experts (MoE)技術は、安価な計算オーバーヘッドでトランスフォーマーのモデルサイズをスケールアップすることができる。
本稿では、ルーティング変動問題に対処する2つのトレーニング段階を持つStableMoEを提案する。
その結果,StableMoEは収束速度と性能の両面で既存のMoE法よりも優れていた。
論文 参考訳(メタデータ) (2022-04-18T16:48:19Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - A Data-Driven Travel Mode Share Estimation Framework based on Mobile
Device Location Data [5.767204062337505]
本稿では,MDLDが集計レベルにおける移動モード共有を推定する能力について検討する。
MDLDから旅行行動情報を抽出するためのデータ駆動型フレームワークを提案する。
提案フレームワークは2つの大規模MDLDデータセットに適用される。
論文 参考訳(メタデータ) (2020-06-17T17:57:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。