論文の概要: PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer
- arxiv url: http://arxiv.org/abs/2404.14034v1
- Date: Mon, 22 Apr 2024 09:50:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:26:08.619542
- Title: PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer
- Title(参考訳): PointDifformer: ニューラルディフュージョンとトランスフォーマーによるロバストポイントクラウド登録
- Authors: Rui She, Qiyu Kang, Sijie Wang, Wee Peng Tay, Kai Zhao, Yang Song, Tianyu Geng, Yi Xu, Diego Navarro Navarro, Andreas Hartmannsgruber,
- Abstract要約: ポイントクラウド登録は、3Dコンピュータビジョンにおける基本的な技術であり、グラフィック、自律運転、ロボット工学の応用がある。
本稿では,グラフニューラル偏微分方程式(PDE)と熱カーネルシグネチャを利用するロバストポイントクラウド登録手法を提案する。
3Dポイントクラウドデータセットの実証実験により、我々のアプローチは、ポイントクラウド登録のための最先端のパフォーマンスを達成するだけでなく、付加的なノイズや3D形状の摂動に対してより堅牢性を示すことを示した。
- 参考スコア(独自算出の注目度): 31.02661827570958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration is a fundamental technique in 3-D computer vision with applications in graphics, autonomous driving, and robotics. However, registration tasks under challenging conditions, under which noise or perturbations are prevalent, can be difficult. We propose a robust point cloud registration approach that leverages graph neural partial differential equations (PDEs) and heat kernel signatures. Our method first uses graph neural PDE modules to extract high dimensional features from point clouds by aggregating information from the 3-D point neighborhood, thereby enhancing the robustness of the feature representations. Then, we incorporate heat kernel signatures into an attention mechanism to efficiently obtain corresponding keypoints. Finally, a singular value decomposition (SVD) module with learnable weights is used to predict the transformation between two point clouds. Empirical experiments on a 3-D point cloud dataset demonstrate that our approach not only achieves state-of-the-art performance for point cloud registration but also exhibits better robustness to additive noise or 3-D shape perturbations.
- Abstract(参考訳): ポイントクラウド登録は、3Dコンピュータビジョンにおける基本的な技術であり、グラフィック、自律運転、ロボット工学の応用がある。
しかし、ノイズや摂動が頻繁に発生する困難な条件下での登録作業は困難である。
本稿では,グラフニューラル偏微分方程式(PDE)と熱カーネルシグネチャを利用するロバストポイントクラウド登録手法を提案する。
提案手法はまず,3次元点近傍の情報を集約することにより,点雲から高次元特徴を抽出し,特徴表現の堅牢性を高める。
次に,熱カーネルシグネチャをアテンション機構に組み込んで,対応するキーポイントを効率よく取得する。
最後に、学習可能な重みを持つ特異値分解(SVD)モジュールを用いて、2点雲間の変換を予測する。
3Dポイントクラウドデータセットの実証実験により、我々のアプローチは、ポイントクラウド登録のための最先端のパフォーマンスを達成するだけでなく、付加的なノイズや3D形状の摂動に対してより堅牢性を示すことを示した。
関連論文リスト
- Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Inlicit Neural Representationsは、複雑なデータモダリティをキャプチャする強力なフレームワークとして注目されている。
本稿では,ニューラルサイン付き距離関数の代わりに占有領域を推定する手法を提案する。
ベースラインに対する暗黙の形状推論を改善する能力と、合成データと実データを用いた最先端技術について強調する。
論文 参考訳(メタデータ) (2024-04-03T14:05:39Z) - PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations [27.45001809414096]
PosDiffNetは、3Dコンピュータビジョンにおけるポイントクラウド登録のモデルである。
ベルトラミフローに基づくグラフニューラル偏微分方程式(PDE)を用いて高次元特徴を求める。
我々は、点雲間のアライメントを容易にするために、高特徴類似度スコアから導かれる多レベル対応を用いる。
我々はPosDiffNetを複数の3Dポイントクラウドデータセット上で評価し、摂動を伴う広い視野でのポイントクラウド登録において、最先端(SOTA)性能を達成することを検証した。
論文 参考訳(メタデータ) (2024-01-06T08:58:15Z) - EPCL: Frozen CLIP Transformer is An Efficient Point Cloud Encoder [60.52613206271329]
本稿では,冷凍CLIP変換器を用いて高品質のクラウドモデルをトレーニングするための textbfEfficient textbfPoint textbfCloud textbfLearning (EPCL) を提案する。
我々のEPCLは、2D-3Dデータをペア化せずに画像の特徴と点雲の特徴を意味的に整合させることで、2Dと3Dのモダリティを接続する。
論文 参考訳(メタデータ) (2022-12-08T06:27:11Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
実スキャンされた3Dポイントクラウドはしばしば不完全であり、下流アプリケーションのために完全なポイントクラウドを復元することが重要である。
ほとんどの既存のポイントクラウド補完方法は、トレーニングにチャンファー距離(CD)損失を使用する。
本稿では,点雲完了のためのPDR(Point Diffusion-Refinement)パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-07T06:59:06Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3Dポイントのクラウド登録は、2つのポイントのクラウド間の厳密な変換を見つけるのが難しいため、依然として非常に難しいトピックである。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-11-30T06:55:05Z) - Graphite: GRAPH-Induced feaTure Extraction for Point Cloud Registration [80.69255347486693]
我々は、シンプルな機能とキーポイント検出器である Graph-induced feaTure extract Pipeline を導入する。
我々は,点クラウド領域を記述し,有意な点を抽出する汎用的なグラフベース学習手法を構築した。
我々は3Dキーポイントパイプラインをグラフニューラルネットワークで再構成し、ポイントセットの効率的な処理を可能にする。
論文 参考訳(メタデータ) (2020-10-18T19:41:09Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
我々はPseudo-LiDAR点雲ネットワークを提案し、時間的および空間的に高品質な点雲列を生成する。
点雲間のシーンフローを活用することにより,提案ネットワークは3次元空間運動関係のより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2020-06-20T03:11:04Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。