論文の概要: End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences
- arxiv url: http://arxiv.org/abs/2011.14579v1
- Date: Mon, 30 Nov 2020 06:55:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:37:37.260355
- Title: End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences
- Title(参考訳): 仮想対応を用いた登録作業のためのエンドツーエンド3Dポイントクラウド学習
- Authors: Zhijian~Qiao, Zhe~Liu, Chuanzhe~Suo, Huanshu~Wei, Zhuowen~Shen,
Hesheng~Wang
- Abstract要約: 3Dポイントのクラウド登録は、2つのポイントのクラウド間の厳密な変換を見つけるのが難しいため、依然として非常に難しいトピックである。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 17.70819292121181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Point cloud registration is still a very challenging topic due to the
difficulty in finding the rigid transformation between two point clouds with
partial correspondences, and it's even harder in the absence of any initial
estimation information. In this paper, we present an end-to-end deep-learning
based approach to resolve the point cloud registration problem. Firstly, the
revised LPD-Net is introduced to extract features and aggregate them with the
graph network. Secondly, the self-attention mechanism is utilized to enhance
the structure information in the point cloud and the cross-attention mechanism
is designed to enhance the corresponding information between the two input
point clouds. Based on which, the virtual corresponding points can be generated
by a soft pointer based method, and finally, the point cloud registration
problem can be solved by implementing the SVD method. Comparison results in
ModelNet40 dataset validate that the proposed approach reaches the
state-of-the-art in point cloud registration tasks and experiment resutls in
KITTI dataset validate the effectiveness of the proposed approach in real
applications.
- Abstract(参考訳): 3dポイントクラウドの登録は、部分対応を持つ2つのポイントクラウド間の厳密な変換を見つけるのが困難であるため、依然として非常に難しいトピックであり、初期推定情報がないことがさらに困難である。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
まず,改良したldp-netを用いて特徴抽出を行い,グラフネットワークに集約する。
次に、セルフアテンション機構を利用してポイントクラウドの構造情報を強化し、2つの入力ポイントクラウド間の対応情報を強化するクロスアテンション機構を設計する。
そこで,ソフトポインタ法により仮想対応点を生成することができ,最終的にSVD法を実装して点雲登録問題を解くことができる。
ModelNet40データセットの比較結果は、提案手法がポイントクラウド登録タスクの最先端に到達し、KITTIデータセットにおける実験的再試行が実際のアプリケーションにおける提案手法の有効性を検証した。
関連論文リスト
- PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer [31.02661827570958]
ポイントクラウド登録は、3Dコンピュータビジョンにおける基本的な技術であり、グラフィック、自律運転、ロボット工学の応用がある。
本稿では,グラフニューラル偏微分方程式(PDE)と熱カーネルシグネチャを利用するロバストポイントクラウド登録手法を提案する。
3Dポイントクラウドデータセットの実証実験により、我々のアプローチは、ポイントクラウド登録のための最先端のパフォーマンスを達成するだけでなく、付加的なノイズや3D形状の摂動に対してより堅牢性を示すことを示した。
論文 参考訳(メタデータ) (2024-04-22T09:50:12Z) - Zero-Shot Point Cloud Registration [94.39796531154303]
ZeroRegは、ポイントクラウドデータセットのトレーニングを不要にする最初のゼロショットポイントクラウド登録アプローチである。
ZeroRegの基盤は、キーポイントからポイントクラウドへの画像特徴の新たな移行であり、三次元幾何学的近傍からの情報を集約することによって強化されている。
3DMatch、3DLoMatch、ScanNetなどのベンチマークでは、ZeroRegはそれぞれ84%、46%、75%という印象的なリコール比(RR)を達成した。
論文 参考訳(メタデータ) (2023-12-05T11:33:16Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
我々は,クラウド登録をポイントとする深層生成ニューラルネットワークを探索し,新しいデータ駆動型登録アルゴリズムを提案する。
ModelNet40と7Sceneのデータセットを用いた実験により、提案アルゴリズムが最先端の精度と効率を達成することを示した。
論文 参考訳(メタデータ) (2021-11-23T10:52:09Z) - Planning with Learned Dynamic Model for Unsupervised Point Cloud
Registration [25.096635750142227]
我々は,変換ネットワークと評価ネットワークから構成される点雲の潜在動的モデルを開発する。
我々は、ポイントクラウド登録プロセスにおける報酬を最大化し、計画方針を反復的に更新するためにクロスエントロピー法(CEM)を用いる。
ModelNet40および7Sceneベンチマークデータセットの実験結果から,本手法は教師なしで良好な登録性能が得られることが示された。
論文 参考訳(メタデータ) (2021-08-05T13:47:11Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
この研究は、ディープニューラルネットワークを用いたポイントクラウド登録の問題に対処する。
重なり合うデータ内容を持つ2つの点雲間のアライメントを予測する手法を提案する。
提案手法は,最先端の精度と比較手法の最低実行時間を実現する。
論文 参考訳(メタデータ) (2020-07-22T08:20:57Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。