Accurate Chemical Reaction Modeling on Noisy Intermediate-Scale Quantum Computers Using a Noise-Resilient Wavefunction Ansatz
- URL: http://arxiv.org/abs/2404.14038v1
- Date: Mon, 22 Apr 2024 09:52:50 GMT
- Title: Accurate Chemical Reaction Modeling on Noisy Intermediate-Scale Quantum Computers Using a Noise-Resilient Wavefunction Ansatz
- Authors: Xiongzhi Zeng, Huili Zhang, Shizheng Zhang, Pei Liu, Kehuan Linghu, Jiangyu Cui, Xiaoxia Cai, Jie Liu, Zhenyu Li, Jinlong Yang,
- Abstract summary: The power of this protocol is demonstrated by numerical results for systems with up to tens of atoms.
Results represent an important step forward in realizing quantum utility in the NISQ era.
- Score: 7.863050169969414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is of great potential for chemical system simulations. In this study, we propose an efficient protocol of quantum computer based simulation of chemical systems which enables accurate chemical reaction modeling on noisy intermediate-scale quantum (NISQ) devices. In this protocol, we combine an correlation energy-based active orbital selection, an effective Hamiltonian from the driven similarity renormalization group (DSRG) method, and a noise-resilient wavefunction ansatz. Such a combination gives a quantum resource-efficient way to accurately simulate chemical systems. The power of this protocol is demonstrated by numerical results for systems with up to tens of atoms. Modeling of a Diels-Alder (DA) reaction is also performed on a cloud-based superconducting quantum computer. These results represent an important step forward in realizing quantum utility in the NISQ era.
Related papers
- qHEOM: A Quantum Algorithm for Simulating Non-Markovian Quantum Dynamics Using the Hierarchical Equations of Motion [0.0]
We introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems.
Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2024-11-18T20:41:10Z) - Quantum Embedding of Non-local Quantum Many-body Interactions in Prototypal Anti-tumor Vaccine Metalloprotein on Near Term Quantum Computing Hardware [4.8962578963959675]
We present for the first time a quantum computer model simulation of a complex hemocyanin molecule.
Hemocyanin is an important respiratory protein involved in various physiological processes.
We conclude that the magnetic structure of hemocyanin is largely influenced by the many-body correction.
arXiv Detail & Related papers (2024-10-16T16:49:42Z) - Reaction dynamics with qubit-efficient momentum-space mapping [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We consider a qubit-efficient mapping on a lattice, which can be efficiently performed using momentum-space basis states.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Simulation of a Diels-Alder Reaction on a Quantum Computer [0.0]
This study explores the potential applications of quantum algorithms and hardware in investigating chemical reactions.
Our goal is to calculate the activation barrier of a reaction between ethylene and cyclopentadiene forming a transition state.
We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute accurate activation barriers.
arXiv Detail & Related papers (2024-03-12T22:29:07Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.