Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement
- URL: http://arxiv.org/abs/2411.15973v1
- Date: Sun, 24 Nov 2024 20:14:57 GMT
- Title: Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement
- Authors: Shivalee Shah, Mayank Vatsa,
- Abstract summary: This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices.
By leveraging quantum entanglement and superposition, this approach advances quantum generative learning.
- Score: 35.436358464279785
- License:
- Abstract: This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices. Unlike previous methods, this model efficiently processes higher-dimensional images with complex pixel structures, even on qubit-limited platforms. This is accomplished through a pairwise Bell-state entangling technique, which reduces space complexity. Additionally, parameterized quantum circuits enable the generation of quantum states with minimal parameters, while still delivering high performance. We conduct comprehensive experiments, comparing the proposed model with both classical and quantum techniques using datasets such as MNIST and CIFAR-10. The results show significant improvements in computational efficiency and performance metrics such as FID, SSIM and PSNR. By leveraging quantum entanglement and superposition, this approach advances quantum generative learning. This advancement paves the way for more sophisticated and resource-efficient quantum diffusion algorithms capable of handling complex data on the NISQ devices.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
arXiv Detail & Related papers (2024-05-22T16:37:22Z) - Quantum Denoising Diffusion Models [4.763438526927999]
We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts.
Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR.
arXiv Detail & Related papers (2024-01-13T11:38:08Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Machine Learning Aided Dimensionality Reduction towards a Resource
Efficient Projective Quantum Eigensolver [0.0]
Recently developed Projective Quantum Eigensolver (PQE) has been demonstrated as an elegant methodology to compute the ground state energy of molecular systems.
We have exploited the collective interplay of these two sets of parameters via machine learning techniques to bring out the synergistic inter-relationship.
arXiv Detail & Related papers (2023-03-20T16:49:56Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.