論文の概要: Mechanistic Interpretability for AI Safety -- A Review
- arxiv url: http://arxiv.org/abs/2404.14082v3
- Date: Fri, 23 Aug 2024 23:02:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:46:51.214935
- Title: Mechanistic Interpretability for AI Safety -- A Review
- Title(参考訳): AI安全のための機械的解釈可能性 - レビュー
- Authors: Leonard Bereska, Efstratios Gavves,
- Abstract要約: 本稿では,機械的解釈可能性について概説する。
機械的解釈性は、AIシステムがより強力で精査されるにつれて、破滅的な結果を防ぐのに役立つ。
- 参考スコア(独自算出の注目度): 28.427951836334188
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Understanding AI systems' inner workings is critical for ensuring value alignment and safety. This review explores mechanistic interpretability: reverse engineering the computational mechanisms and representations learned by neural networks into human-understandable algorithms and concepts to provide a granular, causal understanding. We establish foundational concepts such as features encoding knowledge within neural activations and hypotheses about their representation and computation. We survey methodologies for causally dissecting model behaviors and assess the relevance of mechanistic interpretability to AI safety. We examine benefits in understanding, control, alignment, and risks such as capability gains and dual-use concerns. We investigate challenges surrounding scalability, automation, and comprehensive interpretation. We advocate for clarifying concepts, setting standards, and scaling techniques to handle complex models and behaviors and expand to domains such as vision and reinforcement learning. Mechanistic interpretability could help prevent catastrophic outcomes as AI systems become more powerful and inscrutable.
- Abstract(参考訳): AIシステムの内部動作を理解することは、価値の整合性と安全性を保証する上で重要である。
ニューラルネットワークが学習した計算機構と表現を人間の理解可能なアルゴリズムや概念にリバースエンジニアリングして、きめ細かい因果的理解を提供する。
ニューラルアクティベーション内の知識を符号化する機能や,その表現と計算に関する仮説などの基礎概念を確立する。
本稿では,モデル行動の因果分解手法を調査し,機械的解釈可能性とAI安全性との関連性を評価する。
我々は、理解、制御、アライメント、能力向上や二重利用の懸念といったリスクの利点について検討する。
スケーラビリティ、自動化、包括的な解釈に関わる課題について検討する。
我々は、複雑なモデルや振る舞いを処理し、ビジョンや強化学習のような領域に拡張するための概念を明確にし、標準を設定し、スケーリングする手法を提唱する。
機械的解釈性は、AIシステムがより強力で精査されるにつれて、破滅的な結果を防ぐのに役立つ。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Tensor Networks for Explainable Machine Learning in Cybersecurity [0.0]
マトリックス製品状態(MPS)に基づく教師なしクラスタリングアルゴリズムを開発した。
我々の調査は、MPSがオートエンコーダやGANといった従来のディープラーニングモデルと性能的に競合していることを証明している。
提案手法は,機能的確率,フォン・ノイマン・エントロピー,相互情報の抽出を自然に促進する。
論文 参考訳(メタデータ) (2023-12-29T22:35:45Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - An Objective Metric for Explainable AI: How and Why to Estimate the
Degree of Explainability [3.04585143845864]
本稿では, 客観的手法を用いて, 正しい情報のeX説明可能性の度合いを測定するための, モデルに依存しない新しい指標を提案する。
私たちは、医療とファイナンスのための2つの現実的なAIベースのシステムについて、いくつかの実験とユーザースタディを設計しました。
論文 参考訳(メタデータ) (2021-09-11T17:44:13Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。