論文の概要: Imagining and building wise machines: The centrality of AI metacognition
- arxiv url: http://arxiv.org/abs/2411.02478v1
- Date: Mon, 04 Nov 2024 18:10:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:45.816030
- Title: Imagining and building wise machines: The centrality of AI metacognition
- Title(参考訳): 賢い機械を想像して構築する:AIメタ認知の中心性
- Authors: Samuel G. B. Johnson, Amir-Hossein Karimi, Yoshua Bengio, Nick Chater, Tobias Gerstenberg, Kate Larson, Sydney Levine, Melanie Mitchell, Iyad Rahwan, Bernhard Schölkopf, Igor Grossmann,
- Abstract要約: AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
- 参考スコア(独自算出の注目度): 78.76893632793497
- License:
- Abstract: Recent advances in artificial intelligence (AI) have produced systems capable of increasingly sophisticated performance on cognitive tasks. However, AI systems still struggle in critical ways: unpredictable and novel environments (robustness), lack of transparency in their reasoning (explainability), challenges in communication and commitment (cooperation), and risks due to potential harmful actions (safety). We argue that these shortcomings stem from one overarching failure: AI systems lack wisdom. Drawing from cognitive and social sciences, we define wisdom as the ability to navigate intractable problems - those that are ambiguous, radically uncertain, novel, chaotic, or computationally explosive - through effective task-level and metacognitive strategies. While AI research has focused on task-level strategies, metacognition - the ability to reflect on and regulate one's thought processes - is underdeveloped in AI systems. In humans, metacognitive strategies such as recognizing the limits of one's knowledge, considering diverse perspectives, and adapting to context are essential for wise decision-making. We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety. By focusing on developing wise AI, we suggest an alternative to aligning AI with specific human values - a task fraught with conceptual and practical difficulties. Instead, wise AI systems can thoughtfully navigate complex situations, account for diverse human values, and avoid harmful actions. We discuss potential approaches to building wise AI, including benchmarking metacognitive abilities and training AI systems to employ wise reasoning. Prioritizing metacognition in AI research will lead to systems that act not only intelligently but also wisely in complex, real-world situations.
- Abstract(参考訳): 人工知能(AI)の最近の進歩は、認知タスクにおける高度なパフォーマンスを向上するシステムを生み出している。
しかし、AIシステムは、予測不可能で斬新な環境(ロバスト性)、推論(説明可能性)における透明性の欠如、コミュニケーションとコミットメント(協調)における課題、潜在的に有害な行動(安全)によるリスクなど、依然として重要な方法で苦労している。
AIシステムは知恵を欠いている。
認知科学や社会科学を参考に、知恵は、効果的なタスクレベルとメタ認知戦略を通じて、不明瞭で、根本的に不確実で、新しい、カオス的で、あるいは計算的に爆発的な、難解な問題をナビゲートする能力として定義する。
AI研究はタスクレベルの戦略に重点を置いているが、メタ認知 – 自分の思考プロセスを反映し、規制する能力 – は、AIシステムでは未開発である。
人間では、知識の限界を認識し、多様な視点を考慮し、文脈に適応するといったメタ認知戦略が、賢明な意思決定に不可欠である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
賢明なAIの開発に焦点を当てることで、私たちは、AIを特定の人間の価値と整合させる代替案を提案します。
その代わり、賢いAIシステムは複雑な状況を慎重にナビゲートし、さまざまな人間の価値を説明し、有害な行動を避けることができる。
我々は、メタ認知能力のベンチマークや、賢い推論を採用するためのAIシステムのトレーニングを含む、賢いAI構築への潜在的アプローチについて議論する。
AI研究におけるメタ認知の優先順位付けは、知的だけでなく、複雑な現実世界の状況でも賢く行動するシステムにつながる。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。