論文の概要: Physics-based reward driven image analysis in microscopy
- arxiv url: http://arxiv.org/abs/2404.14146v3
- Date: Sun, 5 May 2024 18:51:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 22:37:13.501945
- Title: Physics-based reward driven image analysis in microscopy
- Title(参考訳): 物理学に基づく顕微鏡による報酬駆動画像解析
- Authors: Kamyar Barakati, Hui Yuan, Amit Goyal, Sergei V. Kalinin,
- Abstract要約: 本稿では,画像解析を動的に最適化するReward Functionの概念に基づく方法論を提案する。
Reward関数は、実験目標とより広いコンテキストと密接に整合するように設計されている。
高次元クラスタリングの物理駆動型報酬関数とアクション空間を作成することにより,部分非秩序領域の同定に向けた報酬関数のアプローチを拡張した。
- 参考スコア(独自算出の注目度): 5.581609660066545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of electron microscopy has expanded our ability to acquire nanometer and atomically resolved images of complex materials. The resulting vast datasets are typically analyzed by human operators, an intrinsically challenging process due to the multiple possible analysis steps and the corresponding need to build and optimize complex analysis workflows. We present a methodology based on the concept of a Reward Function coupled with Bayesian Optimization, to optimize image analysis workflows dynamically. The Reward Function is engineered to closely align with the experimental objectives and broader context and is quantifiable upon completion of the analysis. Here, cross-section, high-angle annular dark field (HAADF) images of ion-irradiated $(Y, Dy)Ba_2Cu_3O_{7-\delta}$ thin-films were used as a model system. The reward functions were formed based on the expected materials density and atomic spacings and used to drive multi-objective optimization of the classical Laplacian-of-Gaussian (LoG) method. These results can be benchmarked against the DCNN segmentation. This optimized LoG* compares favorably against DCNN in the presence of the additional noise. We further extend the reward function approach towards the identification of partially-disordered regions, creating a physics-driven reward function and action space of high-dimensional clustering. We pose that with correct definition, the reward function approach allows real-time optimization of complex analysis workflows at much higher speeds and lower computational costs than classical DCNN-based inference, ensuring the attainment of results that are both precise and aligned with the human-defined objectives.
- Abstract(参考訳): 電子顕微鏡の出現により、複雑な物質のナノメートルと原子分解画像を取得する能力が拡大した。
結果として得られる膨大なデータセットは、典型的には人間のオペレータによって分析される。複数の分析ステップと、それに対応する複雑な分析ワークフローの構築と最適化の必要性により、本質的に困難なプロセスである。
本稿では,ベイズ最適化と結合したリワード関数の概念に基づく手法を提案し,画像解析のワークフローを動的に最適化する。
Reward関数は実験目的やより広い文脈と密接に一致するように設計されており、分析が完了すると定量化される。
ここでは、イオン照射した$(Y, Dy)Ba_2Cu_3O_{7-\delta}$薄膜の断面高角環状暗視野(HAADF)像をモデル系として用いた。
報酬関数は、期待される材料密度と原子間隔に基づいて形成され、古典的なラプラシアン・オブ・ガウス法(LoG)の多目的最適化に使用された。
これらの結果はDCNNセグメンテーションに対してベンチマークすることができる。
この最適化されたLoG*は、追加ノイズの存在下でDCNNと好意的に比較する。
さらに、偏った部分領域の同定に対する報酬関数のアプローチを拡張し、物理駆動の報酬関数と高次元クラスタリングのアクション空間を作成する。
提案手法は,従来のDCNNに基づく推論よりもはるかに高速で計算コストの低い複雑な解析ワークフローをリアルタイムに最適化し,精度と人間の定義した目的に整合した結果の達成を確実にするものである。
関連論文リスト
- From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
物理インフォームドニューラルネットワーク(PINN)は、前方問題を解決する際に大量のデータを生成するのを避けることができる。
動的に構成された PINN-based Topology Optimization (DCPINN-TO) 法を提案する。
変位予測と最適化結果の精度は,DCPINN-TO法が効率的かつ効率的であることを示している。
論文 参考訳(メタデータ) (2023-12-12T05:35:30Z) - Optimizing $CO_{2}$ Capture in Pressure Swing Adsorption Units: A Deep
Neural Network Approach with Optimality Evaluation and Operating Maps for
Decision-Making [0.0]
本研究は,二酸化炭素捕捉用加圧湿式吸着ユニットの高機能化に焦点をあてる。
2つのディープニューラルネットワーク(DNN)モデルからなるマルチインプット・シングルアウトプット(MISO)フレームワークを開発し,実装した。
このアプローチは、実行可能な運用領域(FOR)を明確にし、最適な意思決定シナリオのスペクトルを強調した。
論文 参考訳(メタデータ) (2023-12-06T19:43:37Z) - Deterministic Langevin Unconstrained Optimization with Normalizing Flows [3.988614978933934]
我々は,Fokker-Planck方程式とLangevin方程式にインスパイアされたブラックボックス関数に対するグローバルで自由な代理最適化戦略を導入する。
本研究は,標準合成試験関数の最適目的に向けての競争力の向上を実証する。
論文 参考訳(メタデータ) (2023-10-01T17:46:20Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
平均場ランゲヴィン力学の収束速度解析について述べる。
ダイナミックスに付随する$p_q$により、凸最適化において古典的な結果と平行な収束理論を開発できる。
論文 参考訳(メタデータ) (2022-01-25T17:13:56Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
パーティクルスワム最適化 (PSO) は、探索空間を囲む一組の候補解を、ランダム化されたステップ長を持つ最もよく知られたグローバルおよびローカルな解へ移動させる反復探索法である。
本アルゴリズムは探索的・搾取的行動に対して望ましい特性が得られることを示す。
論文 参考訳(メタデータ) (2021-02-08T13:02:57Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
我々は、最小二乗(LS)の代替として、バックプロジェクションに基づく忠実度項を考える。
LS項ではなくBP項を用いることで最適化アルゴリズムの繰り返しを少なくすることを示す。
論文 参考訳(メタデータ) (2020-05-03T00:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。