New Solutions Based on the Generalized Eigenvalue Problem for the Data Collaboration Analysis
- URL: http://arxiv.org/abs/2404.14164v1
- Date: Mon, 22 Apr 2024 13:26:42 GMT
- Title: New Solutions Based on the Generalized Eigenvalue Problem for the Data Collaboration Analysis
- Authors: Yuta Kawakami, Yuichi Takano, Akira Imakura,
- Abstract summary: Data Collaboration Analysis (DCA) is noted for its efficiency in terms of computational cost and communication load.
Existing optimization problems for determining the necessary collaborative functions have faced challenges.
This research addresses these issues by formulating the optimization problem through the segmentation of matrices into column vectors.
- Score: 10.58933333850352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the accumulation of data across various institutions has garnered attention for the technology of confidential data analysis, which improves analytical accuracy by sharing data between multiple institutions while protecting sensitive information. Among these methods, Data Collaboration Analysis (DCA) is noted for its efficiency in terms of computational cost and communication load, facilitating data sharing and analysis across different institutions while safeguarding confidential information. However, existing optimization problems for determining the necessary collaborative functions have faced challenges, such as the optimal solution for the collaborative representation often being a zero matrix and the difficulty in understanding the process of deriving solutions. This research addresses these issues by formulating the optimization problem through the segmentation of matrices into column vectors and proposing a solution method based on the generalized eigenvalue problem. Additionally, we demonstrate methods for constructing collaborative functions more effectively through weighting and the selection of efficient algorithms suited to specific situations. Experiments using real-world datasets have shown that our proposed formulation and solution for the collaborative function optimization problem achieve superior predictive accuracy compared to existing methods.
Related papers
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
Privacy-Preserving Machine Learning (PPML) addresses this challenge by safeguarding sensitive information.
NRI-DC framework emerges as an innovative approach, potentially resolving the 'data island' issue among institutions.
This study establishes a rigorous theoretical foundation for these collaboration functions and introduces new formulations.
arXiv Detail & Related papers (2024-03-05T08:52:16Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sys is a framework that harnesses optimal transport theory for data repair under Conditional Independence (CI) constraints.
We develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data.
arXiv Detail & Related papers (2024-03-04T18:23:55Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Differentially Private Distributed Convex Optimization [0.0]
In distributed optimization, multiple agents cooperate to minimize a global objective function, expressed as a sum of local objectives.
Locally stored data are not shared with other agents, which could limit the practical usage of DO in applications with sensitive data.
We propose a privacy-preserving DO algorithm for constrained convex optimization models.
arXiv Detail & Related papers (2023-02-28T12:07:27Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization
Problems [9.015720257837575]
We consider the regression between spaces, aiming to infer high-quality optimization solutions from samples of input-solution pairs.
For learning foundations, we present learning-error analysis under the PAC-Bayesian framework.
We obtain highly encouraging experimental results for several classic problems on both synthetic and real-world datasets.
arXiv Detail & Related papers (2021-07-15T17:59:08Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.