論文の概要: STROOBnet Optimization via GPU-Accelerated Proximal Recurrence Strategies
- arxiv url: http://arxiv.org/abs/2404.14388v2
- Date: Fri, 27 Sep 2024 18:56:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:37.077077
- Title: STROOBnet Optimization via GPU-Accelerated Proximal Recurrence Strategies
- Title(参考訳): STROOBnet Optimization by GPU-Accelerated Proximal Recurrence Strategies
- Authors: Ted Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup,
- Abstract要約: 本研究では,時空間レンジオブザーバ・オブザーバ・オブザーバ・バイパートイトネットワーク(STROOBnet)に着目した。
観測ノード(監視カメラなど)を定義された地理的領域内のイベントにリンクし、効率的な監視を可能にする。
ニューオーリンズのRTCC(Real-Time Crime Camera)システムとCFS(Calls for Service)のデータを用いて、ネットワークの初期観測不均衡に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Spatiotemporal networks' observational capabilities are crucial for accurate data gathering and informed decisions across multiple sectors. This study focuses on the Spatiotemporal Ranged Observer-Observable Bipartite Network (STROOBnet), linking observational nodes (e.g., surveillance cameras) to events within defined geographical regions, enabling efficient monitoring. Using data from Real-Time Crime Camera (RTCC) systems and Calls for Service (CFS) in New Orleans, where RTCC combats rising crime amidst reduced police presence, we address the network's initial observational imbalances. Aiming for uniform observational efficacy, we propose the Proximal Recurrence approach. It outperformed traditional clustering methods like k-means and DBSCAN by offering holistic event frequency and spatial consideration, enhancing observational coverage.
- Abstract(参考訳): 時空間ネットワークの観測能力は、複数の分野にわたる正確なデータ収集と情報決定に不可欠である。
本研究では、観測ノード(例えば監視カメラ)を地理的に定義された領域内のイベントにリンクし、効率的な監視を可能にする、時空間レンジオブザーバ・オブザーバブル・バイパートイトネットワーク(STROOBnet)に焦点を当てる。
ニューオーリンズのRTCC(Real-Time Crime Camera)システムとCFS(Calls for Service)のデータを使用。
観察効果の均一化を目的として, 近位再帰法を提案する。
k平均やDBSCANのような従来のクラスタリング手法では、全体的な事象頻度と空間的考慮を提供し、観測範囲を拡大することで性能を向上した。
関連論文リスト
- Kriformer: A Novel Spatiotemporal Kriging Approach Based on Graph Transformers [5.4381914710364665]
本研究は, 環境問題として, スパースセンサの配置と信頼性の低いデータに対処する。
グラフクリフォーマーモデルであるKriformerは、限られた資源であっても、空間的および時間的相関をマイニングすることで、センサのない場所でデータを推定する。
論文 参考訳(メタデータ) (2024-09-23T11:01:18Z) - Earth Observation Satellite Scheduling with Graph Neural Networks [1.1684839631276702]
本稿では,グラフニューラルネットワーク(GNN)と深部強化学習(DRL)に基づく観測結果の選択とスケジューリングを行う新しい手法を提案する。
シミュレーションにより,より大規模な実世界のインスタンスに一般化し,従来の手法と比較して非常に競争力のある性能で学習できることが示唆された。
論文 参考訳(メタデータ) (2024-08-27T13:10:26Z) - Toward Motion Robustness: A masked attention regularization framework in remote photoplethysmography [5.743550396843244]
MAR-rはROIローカライゼーションと複雑なモーションアーティファクトの影響を統合するフレームワークである。
MAR-rは、顔クリップのセマンティック一貫性を捉えるために、マスクされた注意規則化機構をrフィールドに採用している。
また、モデルが不正確なROIに過度に適合し、その後パフォーマンスが低下するのを防ぐために、マスキング技術を採用している。
論文 参考訳(メタデータ) (2024-07-09T08:25:30Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - A Comparative Study of Using Spatial-Temporal Graph Convolutional
Networks for Predicting Availability in Bike Sharing Schemes [13.819341724635319]
都市における自転車シェアリングシステムの利用可能な自転車の数を予測するための注意ベースのST-GCN(AST-GCN)を紹介します。
実験結果はdublinbikesとnyc-citi bikeの2つの実世界のデータセットを用いて提示した。
論文 参考訳(メタデータ) (2021-04-21T17:13:29Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - An Expectation-Based Network Scan Statistic for a COVID-19 Early Warning
System [8.634409966628322]
新型コロナウイルス(COVID-19)パンデミックに対するグレーター・ロンドン・オーソリティ(GLA)の対応のひとつとして、複数の大規模および異種データセットが集められている。
本稿では,早期警戒システムについて述べるとともに,GLAとTransport for Londonを支援するネットワークの予測に基づくスキャン統計を導入する。
論文 参考訳(メタデータ) (2020-12-08T19:35:17Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。