論文の概要: SFANet: Spatial-Frequency Attention Network for Weather Forecasting
- arxiv url: http://arxiv.org/abs/2405.18849v1
- Date: Wed, 29 May 2024 08:00:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:19:10.997705
- Title: SFANet: Spatial-Frequency Attention Network for Weather Forecasting
- Title(参考訳): SFANet:気象予報のための空間周波数アテンションネットワーク
- Authors: Jiaze Wang, Hao Chen, Hongcan Xu, Jinpeng Li, Bowen Wang, Kun Shao, Furui Liu, Huaxi Chen, Guangyong Chen, Pheng-Ann Heng,
- Abstract要約: 天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 54.470205739015434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weather forecasting plays a critical role in various sectors, driving decision-making and risk management. However, traditional methods often struggle to capture the complex dynamics of meteorological systems, particularly in the presence of high-resolution data. In this paper, we propose the Spatial-Frequency Attention Network (SFANet), a novel deep learning framework designed to address these challenges and enhance the accuracy of spatiotemporal weather prediction. Drawing inspiration from the limitations of existing methodologies, we present an innovative approach that seamlessly integrates advanced token mixing and attention mechanisms. By leveraging both pooling and spatial mixing strategies, SFANet optimizes the processing of high-dimensional spatiotemporal sequences, preserving inter-component relational information and modeling extensive long-range relationships. To further enhance feature integration, we introduce a novel spatial-frequency attention module, enabling the model to capture intricate cross-modal correlations. Our extensive experimental evaluation on two distinct datasets, the Storm EVent ImageRy (SEVIR) and the Institute for Climate and Application Research (ICAR) - El Ni\~{n}o Southern Oscillation (ENSO) dataset, demonstrates the remarkable performance of SFANet. Notably, SFANet achieves substantial advancements over state-of-the-art methods, showcasing its proficiency in forecasting precipitation patterns and predicting El Ni\~{n}o events.
- Abstract(参考訳): 天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
しかし、伝統的な手法は、特に高解像度データの存在下で、気象系の複雑な力学を捉えるのに苦労することが多い。
本稿では、これらの課題に対処し、時空間天気予報の精度を高めるために設計された新しいディープラーニングフレームワークである空間周波数注意ネットワーク(SFANet)を提案する。
既存の手法の限界からインスピレーションを得て,高度なトークンミキシングとアテンション機構をシームレスに統合する革新的なアプローチを提案する。
プールと空間混合の両戦略を活用することにより、SFANetは高次元時空間列の処理を最適化し、成分間関係情報を保存し、広範囲の長距離関係をモデル化する。
機能統合をさらに強化するため,我々は空間周波数アテンションモジュールを導入し,複雑な相互モーダル相関を捉える。
SEVIR (Storm EVent ImageRy) と ICAR (Institute for Climate and Application Research) - El Ni\~{n}o Southern Oscillation (ENSO) の2つの異なるデータセットに対する広範な実験的評価は、SFANetの顕著な性能を示している。
特に,SFANetは,降水パターンの予測やEl Ni\~{n}oイベントの予測に習熟し,最先端の手法に対する大幅な進歩を実現している。
関連論文リスト
- Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
下流タスクの最適化には,V2Vチャネル状態情報(CSI)予測が不可欠である。
従来の予測手法は、時間、帯域幅、アンテナ(TX、RX)空間の予測を含む4次元(4D)CSIに重点を置いている。
本研究では,4次元CSIデータ内の依存関係をキャプチャするコンテキスト条件付き時間予測学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T04:15:36Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - XRMDN: An Extended Recurrent Mixture Density Network for Short-Term
Probabilistic Rider Demand Forecasting with High Volatility [16.047461063459846]
本稿では,XRMDN (Extended Recurrent Mixture Density Network) を提案する。
XRMDNは需要動向を順応的に捉え、特に高ボラティリティシナリオにおいて予測精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-10-15T14:18:42Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。