論文の概要: Conditional diffusion models for downscaling & bias correction of Earth system model precipitation
- arxiv url: http://arxiv.org/abs/2404.14416v1
- Date: Fri, 5 Apr 2024 11:01:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 11:16:37.571888
- Title: Conditional diffusion models for downscaling & bias correction of Earth system model precipitation
- Title(参考訳): 地球系モデル降水量のダウンスケーリングとバイアス補正のための条件拡散モデル
- Authors: Michael Aich, Philipp Hess, Baoxiang Pan, Sebastian Bathiany, Yu Huang, Niklas Boers,
- Abstract要約: 本稿では,バイアス補正とダウンスケーリングを同時に行う機械学習フレームワークを提案する。
提案手法は, 統計的忠実性を確保し, 大規模空間パターンを保存し, 既存の手法より優れる。
- 参考スコア(独自算出の注目度): 1.5193424827619018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe losses of property and lives, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle with resolving small-scale dynamics and suffer from biases, especially for extreme events. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability over the output and suffer from unstable training. Here, we propose a novel machine learning framework for simultaneous bias correction and downscaling. We train a generative diffusion model in a supervised way purely on observational data. We map observational and ESM data to a shared embedding space, where both are unbiased towards each other and train a conditional diffusion model to reverse the mapping. Our method can be used to correct any ESM field, as the training is independent of the ESM. Our approach ensures statistical fidelity, preserves large-scale spatial patterns and outperforms existing methods especially regarding extreme events and small-scale spatial features that are crucial for impact assessments.
- Abstract(参考訳): 気候変動は激しい降雨や洪水のような極端な気象現象を悪化させる。
これらの事象は、資産や生活に深刻な損失をもたらすため、正確な降水シミュレーションが不可欠である。
しかし、既存のアース・システム・モデル(ESM)は、特に極端な出来事において、小規模のダイナミクスの解決とバイアスに悩まされている。
従来の統計的バイアス補正とダウンスケーリング手法は空間構造の改善に乏しく、最近のディープラーニング手法では出力に対する制御性が欠如し、不安定な訓練に苦しむ。
本稿では,バイアス補正とダウンスケーリングを同時に行う機械学習フレームワークを提案する。
我々は、観測データに基づいて、教師付き方法で生成拡散モデルを訓練する。
我々は、観測データとESMデータを共有埋め込み空間にマッピングし、両者は互いに偏りがなく、条件拡散モデルを訓練してマッピングを反転させる。
トレーニングはESMとは無関係であるため,任意のESMフィールドの修正に使用することができる。
提案手法は, 統計的忠実度を保証し, 大規模空間パターンを保存し, 特に, 影響評価に欠かせない, 極端な事象や小規模な空間的特徴に関して, 既存の手法より優れる。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - A Deconfounding Approach to Climate Model Bias Correction [26.68810227550602]
地球温暖化モデル(GCM)は、地球系をシミュレートすることで、将来の気候変動を予測するのに不可欠である。
GCMは、モデルの不確実性、パラメータ化の単純化、複雑な気候現象の不十分な表現による体系的なバイアスを示す。
本稿では,GCMと観測データの両方を用いて,多原因共同創設者を捉える因子モデルを学習するための新しいバイアス補正手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T01:53:35Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - DiffESM: Conditional Emulation of Earth System Models with Diffusion
Models [2.1989764549743476]
地球系モデル (ESMs) の重要な応用は、熱波や乾燥した呪文のような極端な気象現象を研究することである。
拡散モデルにより、以前にもみられなかった気候シナリオ下でのESMの傾向を効果的にエミュレートできることを示す。
論文 参考訳(メタデータ) (2023-04-23T17:12:33Z) - Deep learning for bias-correcting CMIP6-class Earth system models [0.0]
本稿では,cGANsに基づくポストプロセッシング手法により,最先端のCMIP6クラスESMのバイアスを補正できることを示す。
本手法は, 金標準偏差調整フレームワークと同様に局所周波数分布を均等に改善するが, 空間パターンの補正において既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-16T13:53:57Z) - Physically Constrained Generative Adversarial Networks for Improving
Precipitation Fields from Earth System Models [0.0]
既存のポストプロセッシング手法はESMシミュレーションを局所的に改善できるが、モデル化された空間パターンの誤りを訂正することはできない。
本研究では,局所分布と空間構造を同時に改善するための,物理的に制約された生成逆ネットワーク(GAN)に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-25T15:19:10Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
本稿では, Epidemic Type Aftershock Sequence (ETAS) モデルのベイズ的完全定式化を提案する。
地理的領域における主震の発生は不均一な空間的点過程に従うと仮定される。
論文 参考訳(メタデータ) (2020-02-05T10:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。