Generative Subspace Adversarial Active Learning for Outlier Detection in Multiple Views of High-dimensional Data
- URL: http://arxiv.org/abs/2404.14451v1
- Date: Sat, 20 Apr 2024 19:22:05 GMT
- Title: Generative Subspace Adversarial Active Learning for Outlier Detection in Multiple Views of High-dimensional Data
- Authors: Jose Cribeiro-Ramallo, Vadim Arzamasov, Federico Matteucci, Denis Wambold, Klemens Böhm,
- Abstract summary: We introduce Generative Subspace Adversarial Active Learning (GSAAL) for outlier detection in high-dimensional data.
GSAAL is specifically designed to address the MV limitation while also handling the inlier assumption (IA), curse of dimensionality (CD), and multiple views (MV)
Our experiments demonstrate the effectiveness and scalability of GSAAL, highlighting its superior performance compared to other popular OD methods.
- Score: 3.501071975888134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Outlier detection in high-dimensional tabular data is an important task in data mining, essential for many downstream tasks and applications. Existing unsupervised outlier detection algorithms face one or more problems, including inlier assumption (IA), curse of dimensionality (CD), and multiple views (MV). To address these issues, we introduce Generative Subspace Adversarial Active Learning (GSAAL), a novel approach that uses a Generative Adversarial Network with multiple adversaries. These adversaries learn the marginal class probability functions over different data subspaces, while a single generator in the full space models the entire distribution of the inlier class. GSAAL is specifically designed to address the MV limitation while also handling the IA and CD, being the only method to do so. We provide a comprehensive mathematical formulation of MV, convergence guarantees for the discriminators, and scalability results for GSAAL. Our extensive experiments demonstrate the effectiveness and scalability of GSAAL, highlighting its superior performance compared to other popular OD methods, especially in MV scenarios.
Related papers
- HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
State Space Models (SSMs) with efficient hardware-aware designs have demonstrated significant potential in computer vision tasks.
These models have been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation.
We introduce the Dynamic Visual State Space (DVSS) block, which employs deformable convolution to mitigate the long-range forgetting problem.
We also introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process.
arXiv Detail & Related papers (2024-10-04T06:19:29Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - MCL-GAN: Generative Adversarial Networks with Multiple Specialized Discriminators [47.19216713803009]
We propose a framework of generative adversarial networks with multiple discriminators.
We guide each discriminator to have expertise in a subset of the entire data.
Despite the use of multiple discriminators, the backbone networks are shared across the discriminators.
arXiv Detail & Related papers (2021-07-15T11:35:08Z) - Generalized One-Class Learning Using Pairs of Complementary Classifiers [41.64645294104883]
One-class learning is the classic problem of fitting a model to the data for which annotations are available only for a single class.
In this paper, we explore novel objectives for one-class learning, which we collectively refer to as Generalized One-class Discriminative Subspaces (GODS)
arXiv Detail & Related papers (2021-06-24T18:52:05Z) - Supervised Anomaly Detection via Conditional Generative Adversarial
Network and Ensemble Active Learning [24.112455929818484]
Anomaly detection has wide applications in machine intelligence but is still a difficult unsolved problem.
Traditional unsupervised anomaly detectors are suboptimal while supervised models can easily make biased predictions.
We present a new supervised anomaly detector through introducing the novel Ensemble Active Learning Generative Adversarial Network (EAL-GAN)
arXiv Detail & Related papers (2021-04-24T13:47:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Supervised Hyperalignment for multi-subject fMRI data alignment [81.8694682249097]
This paper proposes a Supervised Hyperalignment (SHA) method to ensure better functional alignment for MVP analysis.
Experiments on multi-subject datasets demonstrate that SHA method achieves up to 19% better performance for multi-class problems.
arXiv Detail & Related papers (2020-01-09T09:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.