論文の概要: LLMs in Web Development: Evaluating LLM-Generated PHP Code Unveiling Vulnerabilities and Limitations
- arxiv url: http://arxiv.org/abs/2404.14459v2
- Date: Tue, 21 May 2024 13:10:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:52:56.693216
- Title: LLMs in Web Development: Evaluating LLM-Generated PHP Code Unveiling Vulnerabilities and Limitations
- Title(参考訳): Web開発におけるLLM: LLM生成PHPコードの評価と脆弱性と制限
- Authors: Rebeka Tóth, Tamas Bisztray, László Erdodi,
- Abstract要約: 本研究では,大規模言語モデルが生成するWebアプリケーションのセキュリティを評価し,2500 GPT-4生成PHP Webサイトを分析した。
本研究は,GPT-4 生成 PHP コード中の Insecure File Upload,sql Injection, Stored XSS, Reflected XSS の同定に重点を置いている。
BurpのScanによると、サイトの11.56%は、すぐに妥協できる。静的スキャンの結果が加わった26%には、Webインタラクションを通じて悪用できる少なくとも1つの脆弱性があった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates the security of web application code generated by Large Language Models, analyzing 2,500 GPT-4 generated PHP websites. These were deployed in Docker containers and tested for vulnerabilities using a hybrid approach of Burp Suite active scanning, static analysis, and manual review. Our investigation focuses on identifying Insecure File Upload, SQL Injection, Stored XSS, and Reflected XSS in GPT-4 generated PHP code. This analysis highlights potential security risks and the implications of deploying such code in real-world scenarios. Overall, our analysis found 2,440 vulnerable parameters. According to Burp's Scan, 11.56% of the sites can be straight out compromised. Adding static scan results, 26% had at least one vulnerability that can be exploited through web interaction. Certain coding scenarios, like file upload functionality, are insecure 78% of the time, underscoring significant risks to software safety and security. To support further research, we have made the source codes and a detailed vulnerability record for each sample publicly available. This study emphasizes the crucial need for thorough testing and evaluation if generative AI technologies are used in software development.
- Abstract(参考訳): 本研究では,大規模言語モデルが生成するWebアプリケーションのセキュリティを評価し,2500 GPT-4生成PHP Webサイトを分析した。
これらはDockerコンテナにデプロイされ、Burp Suiteのアクティブスキャン、静的解析、手動によるレビューのハイブリッドアプローチを使用して、脆弱性のテストが行われた。
我々は,GPT-4の生成したPHPコードにセキュアファイルのアップロード,SQLインジェクション,ストアドXSS,リフレクションXSSを識別することに焦点を当てた。
この分析は、潜在的なセキュリティリスクと、そのようなコードを現実世界のシナリオにデプロイすることの意味を強調している。
分析の結果、脆弱なパラメータが2,440個見つかった。
Burp's Scanによると、サイトの11.56%はすぐに妥協できる。
静的スキャンの結果が加わったため、26%はWebインタラクションを通じて悪用できる脆弱性を少なくとも1つ持っていた。
ファイルアップロード機能のような特定のコーディングシナリオは、その時間の78%が安全ではないため、ソフトウェアの安全性とセキュリティに対する重大なリスクが強調されている。
さらなる研究を支援するため、ソースコードと各サンプルの詳細な脆弱性記録を公開しました。
この研究は、生成型AI技術がソフトウェア開発に使用される場合、徹底的なテストと評価の必要性を強調している。
関連論文リスト
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - Yama: Precise Opcode-based Data Flow Analysis for Detecting PHP Applications Vulnerabilities [4.262259005587605]
Yama は、PHP のための文脈に敏感で経路に敏感な相互言語間データフロー解析手法である。
我々は,PHPオペコードの正確なセマンティクスと明確な制御フローにより,データフロー解析をより正確かつ効率的に行えることを発見した。
我々は,基本データフロー解析機能,複雑な意味解析機能,実世界のアプリケーションにおける脆弱性発見機能という3つの側面からヤマを評価した。
論文 参考訳(メタデータ) (2024-10-16T08:14:37Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
我々はGenAIのリスクをコードする統合的かつ包括的な評価プラットフォームSecCodePLTを開発した。
安全でないコードには、専門家と自動生成を組み合わせたデータ生成のための新しい方法論を導入する。
サイバー攻撃支援のために、我々はモデルに実際の攻撃を引き起こすよう促すサンプルと、我々の環境における動的な指標を構築した。
論文 参考訳(メタデータ) (2024-10-14T21:17:22Z) - RealVul: Can We Detect Vulnerabilities in Web Applications with LLM? [4.467475584754677]
本稿では,PHP 脆弱性検出用に設計された最初の LLM ベースのフレームワークである RealVul を紹介する。
コードの合理化と不要なセマンティック情報を排除しながら、潜在的な脆弱性トリガを分離できます。
また、データ合成法の改善により、PHPの脆弱性サンプルが不足している問題にも対処する。
論文 参考訳(メタデータ) (2024-10-10T03:16:34Z) - LLM-Assisted Static Analysis for Detecting Security Vulnerabilities [14.188864624736938]
大規模な言語モデル(LLM)は印象的なコード生成機能を示しているが、そのような脆弱性を検出するためにコードに対して複雑な推論を行うことはできない。
我々は,LLMと静的解析を体系的に組み合わせ,セキュリティ脆弱性検出のための全体リポジトリ推論を行うニューロシンボリックアプローチであるIRISを提案する。
論文 参考訳(メタデータ) (2024-05-27T14:53:35Z) - Can Large Language Models Find And Fix Vulnerable Software? [0.0]
GPT-4は、その脆弱性の約4倍の脆弱性を同定した。
各脆弱性に対して実行可能な修正を提供し、偽陽性率の低いことを証明した。
GPT-4のコード修正により脆弱性の90%が減少し、コード行数はわずか11%増加した。
論文 参考訳(メタデータ) (2023-08-20T19:33:12Z) - Vulnerability Detection Using Two-Stage Deep Learning Models [0.0]
C/C++ソースコードの脆弱性検出には,2つのディープラーニングモデルが提案されている。
最初のステージはCNNで、ソースコードに脆弱性があるかどうかを検出する。
2番目のステージは、この脆弱性を50種類の脆弱性のクラスに分類するCNN-LTSMである。
論文 参考訳(メタデータ) (2023-05-08T22:12:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Autosploit: A Fully Automated Framework for Evaluating the
Exploitability of Security Vulnerabilities [47.748732208602355]
Autosploitは脆弱性の悪用性を評価するためのフレームワークだ。
環境の異なる設定でエクスプロイトを自動的にテストする。
ノイズレス環境とノイズの多い環境の両方で脆弱性を悪用する能力に影響を与えるシステムの特性を識別することができる。
論文 参考訳(メタデータ) (2020-06-30T18:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。