論文の概要: Towards smaller, faster decoder-only transformers: Architectural variants and their implications
- arxiv url: http://arxiv.org/abs/2404.14462v2
- Date: Wed, 24 Apr 2024 03:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 15:54:19.554034
- Title: Towards smaller, faster decoder-only transformers: Architectural variants and their implications
- Title(参考訳): より小さく、より高速なデコーダのみのトランスフォーマーを目指して--アーキテクチャ的変異とその意味
- Authors: Sathya Krishnan Suresh, Shunmugapriya P,
- Abstract要約: 本稿では,デコーダのみのトランスアーキテクチャであるParallelGPT(p-gpt),LinearlyCompressedGPT(lc-gpt),ConvCompressedGPT(cc-gpt)の3つの変更点を紹介する。
これらの変種は、モデルのサイズを減らし、トレーニング時間を短縮することで、コード生成タスクにおける従来のアーキテクチャと同等のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on Large Language Models (LLMs) has recently seen exponential growth, largely focused on transformer-based architectures, as introduced by [1] and further advanced by the decoder-only variations in [2]. Contemporary studies typically aim to improve model capabilities by increasing both the architecture's complexity and the volume of training data. However, research exploring how to reduce model sizes while maintaining performance is limited. This study introduces three modifications to the decoder-only transformer architecture: ParallelGPT (p-gpt), LinearlyCompressedGPT (lc-gpt), and ConvCompressedGPT (cc-gpt). These variants achieve comparable performance to conventional architectures in code generation tasks while benefiting from reduced model sizes and faster training times. We open-source the model weights and codebase to support future research and development in this domain.
- Abstract(参考訳): 大規模言語モデル(LLMs)の研究は、最近指数関数的な成長をみせており、主にトランスフォーマーベースのアーキテクチャに焦点をあてており、[1]によって導入され、[2]におけるデコーダのみのバリエーションによってさらに進歩している。
現代の研究は、アーキテクチャの複雑さとトレーニングデータの量の両方を増大させることで、モデル機能を改善することを目的としている。
しかし、性能を維持しながらモデルのサイズを小さくする方法を研究する研究は限られている。
本稿では,デコーダのみのトランスアーキテクチャであるParallelGPT(p-gpt),LinearlyCompressedGPT(lc-gpt),ConvCompressedGPT(cc-gpt)の3つの変更点を紹介する。
これらの変種は、モデルのサイズを減らし、トレーニング時間を短縮することで、コード生成タスクにおける従来のアーキテクチャと同等のパフォーマンスを実現する。
私たちは、この領域における将来の研究開発をサポートするために、モデルの重みとコードベースをオープンソースにしています。
関連論文リスト
- Towards Neural Scaling Laws for Time Series Foundation Models [63.5211738245487]
我々は、エンコーダオンリーとデコーダオンリーのトランスフォーマーの2つの一般的なTSFMアーキテクチャについて検討し、IDおよびOODデータのスケーリング挙動について検討する。
実験の結果,TSFMのログライクな損失はOODとID設定の両方で同様のスケーリング挙動を示すことがわかった。
モデル機能を強化した大規模TSFMの設計とスケーリングのための実用的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-10-16T08:23:39Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
我々は、現在のAI分野における2つの重要な技術の課題と進化を探求する:ビジョントランスフォーマーモデルと大規模言語モデル(LLM)。
Vision Transformerは、イメージを小さな断片に分割することで、グローバルな情報をキャプチャするが、その高い参照数とモバイル機器へのオーバヘッド制限の配置を計算する。
LLMは自然言語処理に革命をもたらしたが、デプロイメントの課題にも直面している。
論文 参考訳(メタデータ) (2024-08-16T11:56:49Z) - State Space Model for New-Generation Network Alternative to Transformers: A Survey [52.812260379420394]
深層学習時代において、Transformerアーキテクチャは、トレーニング済みのビッグモデルとさまざまなダウンストリームタスクにまたがる強力なパフォーマンスを示してきた。
注意モデルの複雑さをさらに軽減するために、より効率的な手法を設計するための多くの努力がなされている。
その中でも、自己注意に基づくトランスフォーマーモデルの代替として、ステートスペースモデル(SSM)が近年ますます注目を集めている。
論文 参考訳(メタデータ) (2024-04-15T07:24:45Z) - Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers [1.1499643186017316]
本稿では,トランスフォーマ言語モデルの効率を向上させるために,クロスアーキテクチャトランスファー学習(XATL)を提案する。
Methodabbrはトレーニング時間を最大2.5倍に削減し、同じ計算予算内でLMベンチマークで最大2.6%より強力なモデルで最小限に収束する。
論文 参考訳(メタデータ) (2024-04-03T12:27:36Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Learning to Grow Pretrained Models for Efficient Transformer Training [72.20676008625641]
そこでは、より小さなモデルのパラメータを線形にマッピングして、より大きなモデルを初期化する。
言語と視覚のトランスフォーマーをまたいだ実験では、学習した線形成長演算子(LiGO)が、スクラッチから最大50%の計算コストを節約できることが示されています。
論文 参考訳(メタデータ) (2023-03-02T05:21:18Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2022-07-13T17:18:02Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - E.T.: Entity-Transformers. Coreference augmented Neural Language Model
for richer mention representations via Entity-Transformer blocks [3.42658286826597]
本稿では,ニューラルネットワークモデル,特にGPT2におけるTransformer-blockアーキテクチャの拡張について述べる。
我々のモデルであるGPT2Eは、GPT2のトランスフォーマー層アーキテクチャをEntity-Transformersに拡張しています。
論文 参考訳(メタデータ) (2020-11-10T22:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。