論文の概要: Towards smaller, faster decoder-only transformers: Architectural variants and their implications
- arxiv url: http://arxiv.org/abs/2404.14462v4
- Date: Tue, 08 Oct 2024 09:20:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:27:21.990403
- Title: Towards smaller, faster decoder-only transformers: Architectural variants and their implications
- Title(参考訳): より小さく、より高速なデコーダのみのトランスフォーマーを目指して--アーキテクチャ的変異とその意味
- Authors: Sathya Krishnan Suresh, Shunmugapriya P,
- Abstract要約: 本稿では,デコーダのみのトランスアーキテクチャであるParallelGPT,LinearGPT,ConvGPTの3つの改良点を紹介する。
これらのバリエーションは、言語生成における従来のアーキテクチャと同等のパフォーマンスを示すが、モデルのサイズを縮小し、より高速なトレーニングプロセスの恩恵を受ける。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent times, the research on Large Language Models (LLMs) has grown exponentially, predominantly focusing on models underpinned by the transformer architecture, as established by [1], and further developed through the decoder-only variations by [2]. Contemporary efforts in this field primarily aim to enhance model capabilities by scaling up both the architecture and data volumes utilized during training. However, the exploration into reduce these model sizes while preserving their efficacy remains scant. In this study, we introduce three modifications to the decoder-only transformer architecture, namely ParallelGPT (pgpt), LinearGPT (lgpt), and ConvGPT (cgpt). These variants demonstrate comparable performance to the conventional architecture in language generation, yet benefit from reduced model sizes and faster training processes. We open-source the model weights and the complete codebase for these implementation for further research.
- Abstract(参考訳): 近年、Large Language Models (LLMs) の研究は指数関数的に増加しており、主に [1] が確立した変圧器アーキテクチャに根ざしたモデルに焦点が当てられ、デコーダのみのバリエーション [2] によってさらに発展してきた。
この分野での現在の取り組みは、主に、トレーニング中に使用されるアーキテクチャとデータボリュームの両方をスケールアップすることで、モデル機能を強化することを目的としています。
しかし、これらのモデルのサイズを減らし、有効性を保っているという探索は、いまだに残っていない。
本研究では,デコーダのみのトランスフォーマーアーキテクチャであるParallelGPT(pgpt),LinearGPT(lgpt),ConvGPT(cgpt)の3つの改良点を紹介する。
これらのバリエーションは、言語生成における従来のアーキテクチャと同等のパフォーマンスを示すが、モデルのサイズを縮小し、より高速なトレーニングプロセスの恩恵を受ける。
我々はこれらの実装のためのモデルウェイトと完全なコードベースをオープンソース化し、さらなる研究を行っています。
関連論文リスト
- Towards Neural Scaling Laws for Time Series Foundation Models [63.5211738245487]
我々は、エンコーダオンリーとデコーダオンリーのトランスフォーマーの2つの一般的なTSFMアーキテクチャについて検討し、IDおよびOODデータのスケーリング挙動について検討する。
実験の結果,TSFMのログライクな損失はOODとID設定の両方で同様のスケーリング挙動を示すことがわかった。
モデル機能を強化した大規模TSFMの設計とスケーリングのための実用的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-10-16T08:23:39Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
我々は、現在のAI分野における2つの重要な技術の課題と進化を探求する:ビジョントランスフォーマーモデルと大規模言語モデル(LLM)。
Vision Transformerは、イメージを小さな断片に分割することで、グローバルな情報をキャプチャするが、その高い参照数とモバイル機器へのオーバヘッド制限の配置を計算する。
LLMは自然言語処理に革命をもたらしたが、デプロイメントの課題にも直面している。
論文 参考訳(メタデータ) (2024-08-16T11:56:49Z) - State Space Model for New-Generation Network Alternative to Transformers: A Survey [52.812260379420394]
深層学習時代において、Transformerアーキテクチャは、トレーニング済みのビッグモデルとさまざまなダウンストリームタスクにまたがる強力なパフォーマンスを示してきた。
注意モデルの複雑さをさらに軽減するために、より効率的な手法を設計するための多くの努力がなされている。
その中でも、自己注意に基づくトランスフォーマーモデルの代替として、ステートスペースモデル(SSM)が近年ますます注目を集めている。
論文 参考訳(メタデータ) (2024-04-15T07:24:45Z) - Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers [1.1499643186017316]
本稿では,トランスフォーマ言語モデルの効率を向上させるために,クロスアーキテクチャトランスファー学習(XATL)を提案する。
Methodabbrはトレーニング時間を最大2.5倍に削減し、同じ計算予算内でLMベンチマークで最大2.6%より強力なモデルで最小限に収束する。
論文 参考訳(メタデータ) (2024-04-03T12:27:36Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Learning to Grow Pretrained Models for Efficient Transformer Training [72.20676008625641]
そこでは、より小さなモデルのパラメータを線形にマッピングして、より大きなモデルを初期化する。
言語と視覚のトランスフォーマーをまたいだ実験では、学習した線形成長演算子(LiGO)が、スクラッチから最大50%の計算コストを節約できることが示されています。
論文 参考訳(メタデータ) (2023-03-02T05:21:18Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2022-07-13T17:18:02Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - E.T.: Entity-Transformers. Coreference augmented Neural Language Model
for richer mention representations via Entity-Transformer blocks [3.42658286826597]
本稿では,ニューラルネットワークモデル,特にGPT2におけるTransformer-blockアーキテクチャの拡張について述べる。
我々のモデルであるGPT2Eは、GPT2のトランスフォーマー層アーキテクチャをEntity-Transformersに拡張しています。
論文 参考訳(メタデータ) (2020-11-10T22:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。