Geometric Optimization of Restricted-Open and Complete Active Space Self-Consistent Field Wavefunctions
- URL: http://arxiv.org/abs/2404.14655v1
- Date: Tue, 23 Apr 2024 01:31:41 GMT
- Title: Geometric Optimization of Restricted-Open and Complete Active Space Self-Consistent Field Wavefunctions
- Authors: Laurent Vidal, Tommaso Nottoli, Filippo Lipparini, Eric Cancès,
- Abstract summary: We show and explore how to solve Complete Space ActiveF problems.
We compare these methods and find robust ones without numerical parameters.
Our study suggests Riemannian optimization as fine-tuning for orbital properties for ROHF and CHF optimization warranting further investigation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore Riemannian optimization methods for Restricted-Open-shell Hartree-Fock (ROHF) and Complete Active Space Self-Consistent Field (CASSCF) methods. After showing that ROHF and CASSCF can be reformulated as optimization problems on so-called flag manifolds, we review Riemannian optimization basics and their application to these specific problems. We compare these methods to traditional ones and find robust convergence properties without fine-tuning of numerical parameters. Our study suggests Riemannian optimization as a valuable addition to orbital optimization for ROHF and CASSCF, warranting further investigation.
Related papers
- Streamlining in the Riemannian Realm: Efficient Riemannian Optimization
with Loopless Variance Reduction [4.578425862931332]
This study focuses on the crucial reduction mechanism used in both Euclidean and Riemannian settings.
Motivated by Euclidean methods, we introduce R-based methods to replace the outer loop with computation triggered by a coin flip.
Using R- as a framework, we demonstrate its applicability to various important settings.
arXiv Detail & Related papers (2024-03-11T12:49:37Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
We show how to implement geometry-aware kernels for Bayesian optimization.
This technique can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics.
arXiv Detail & Related papers (2021-11-02T09:47:22Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence [66.83161885378192]
Area under ROC (AUROC) and precision-recall curves (AUPRC) are common metrics for evaluating classification performance for imbalanced problems.
We propose a technical method to optimize AUPRC for deep learning.
arXiv Detail & Related papers (2021-04-18T06:22:21Z) - High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds [0.0]
We propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings.
Our approach features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space.
arXiv Detail & Related papers (2020-10-21T11:24:11Z) - A Riemannian Primal-dual Algorithm Based on Proximal Operator and its
Application in Metric Learning [3.511851311025242]
We propose a primal-dual algorithm to optimize the primal and dual variables iteratively.
We prove convergence of the proposed algorithm and show its non-asymptotic convergence rate.
Preliminary experimental results on an optimal fund selection problem in fund of funds management showed its efficacy.
arXiv Detail & Related papers (2020-05-19T03:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.