High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
- URL: http://arxiv.org/abs/2010.10904v3
- Date: Wed, 25 Nov 2020 08:56:21 GMT
- Title: High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
- Authors: No\'emie Jaquier and Leonel Rozo
- Abstract summary: We propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings.
Our approach features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent success of Bayesian optimization (BO) in a variety of
applications where sample efficiency is imperative, its performance may be
seriously compromised in settings characterized by high-dimensional parameter
spaces. A solution to preserve the sample efficiency of BO in such problems is
to introduce domain knowledge into its formulation. In this paper, we propose
to exploit the geometry of non-Euclidean search spaces, which often arise in a
variety of domains, to learn structure-preserving mappings and optimize the
acquisition function of BO in low-dimensional latent spaces. Our approach,
built on Riemannian manifolds theory, features geometry-aware Gaussian
processes that jointly learn a nested-manifold embedding and a representation
of the objective function in the latent space. We test our approach in several
benchmark artificial landscapes and report that it not only outperforms other
high-dimensional BO approaches in several settings, but consistently optimizes
the objective functions, as opposed to geometry-unaware BO methods.
Related papers
- Geometric Optimization of Restricted-Open and Complete Active Space Self-Consistent Field Wavefunctions [0.0]
We show and explore how to solve Complete Space ActiveF problems.
We compare these methods and find robust ones without numerical parameters.
Our study suggests Riemannian optimization as fine-tuning for orbital properties for ROHF and CHF optimization warranting further investigation.
arXiv Detail & Related papers (2024-04-23T01:31:41Z) - An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
We propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors.
We show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces.
We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs.
arXiv Detail & Related papers (2023-02-14T18:55:21Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
We show how to implement geometry-aware kernels for Bayesian optimization.
This technique can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics.
arXiv Detail & Related papers (2021-11-02T09:47:22Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
arXiv Detail & Related papers (2021-02-27T23:06:24Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Learning to Guide Random Search [111.71167792453473]
We consider derivative-free optimization of a high-dimensional function that lies on a latent low-dimensional manifold.
We develop an online learning approach that learns this manifold while performing the optimization.
We empirically evaluate the method on continuous optimization benchmarks and high-dimensional continuous control problems.
arXiv Detail & Related papers (2020-04-25T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.