First Mapping the Canopy Height of Primeval Forests in the Tallest Tree Area of Asia
- URL: http://arxiv.org/abs/2404.14661v1
- Date: Tue, 23 Apr 2024 01:45:55 GMT
- Title: First Mapping the Canopy Height of Primeval Forests in the Tallest Tree Area of Asia
- Authors: Guangpeng Fan, Fei Yan, Xiangquan Zeng, Qingtao Xu, Ruoyoulan Wang, Binghong Zhang, Jialing Zhou, Liangliang Nan, Jinhu Wang, Zhiwei Zhang, Jia Wang,
- Abstract summary: We have developed the world's first canopy height map of the distribution area of world-level giant trees.
This mapping is crucial for discovering more individual and community world-level giant trees.
- Score: 6.826460268652235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have developed the world's first canopy height map of the distribution area of world-level giant trees. This mapping is crucial for discovering more individual and community world-level giant trees, and for analyzing and quantifying the effectiveness of biodiversity conservation measures in the Yarlung Tsangpo Grand Canyon (YTGC) National Nature Reserve. We proposed a method to map the canopy height of the primeval forest within the world-level giant tree distribution area by using a spaceborne LiDAR fusion satellite imagery (Global Ecosystem Dynamics Investigation (GEDI), ICESat-2, and Sentinel-2) driven deep learning modeling. And we customized a pyramid receptive fields depth separable CNN (PRFXception). PRFXception, a CNN architecture specifically customized for mapping primeval forest canopy height to infer the canopy height at the footprint level of GEDI and ICESat-2 from Sentinel-2 optical imagery with a 10-meter spatial resolution. We conducted a field survey of 227 permanent plots using a stratified sampling method and measured several giant trees using UAV-LS. The predicted canopy height was compared with ICESat-2 and GEDI validation data (RMSE =7.56 m, MAE=6.07 m, ME=-0.98 m, R^2=0.58 m), UAV-LS point clouds (RMSE =5.75 m, MAE =3.72 m, ME = 0.82 m, R^2= 0.65 m), and ground survey data (RMSE = 6.75 m, MAE = 5.56 m, ME= 2.14 m, R^2=0.60 m). We mapped the potential distribution map of world-level giant trees and discovered two previously undetected giant tree communities with an 89% probability of having trees 80-100 m tall, potentially taller than Asia's tallest tree. This paper provides scientific evidence confirming southeastern Tibet--northwestern Yunnan as the fourth global distribution center of world-level giant trees initiatives and promoting the inclusion of the YTGC giant tree distribution area within the scope of China's national park conservation.
Related papers
- PlantCamo: Plant Camouflage Detection [60.685139083469956]
This paper introduces a new challenging problem of Plant Camouflage Detection (PCD)
To address this problem, we introduce the PlantCamo dataset, which comprises 1,250 images with camouflaged plants.
We conduct a large-scale benchmark study using 20+ cutting-edge COD models on the proposed dataset.
Our PCNet surpasses performance thanks to its multi-scale global feature enhancement and refinement.
arXiv Detail & Related papers (2024-10-23T06:51:59Z) - Estimation of forest height and biomass from open-access multi-sensor
satellite imagery and GEDI Lidar data: high-resolution maps of metropolitan
France [0.0]
This study uses a machine learning approach that was previously developed to produce local maps of forest parameters.
We used the GEDI Lidar mission as reference height data, and the satellite images from Sentinel-1, Sentinel-2 and ALOS-2 PALSA-2 to estimate forest height.
The height map is then derived into volume and aboveground biomass (AGB) using allometric equations.
arXiv Detail & Related papers (2023-10-23T07:58:49Z) - Automating global landslide detection with heterogeneous ensemble
deep-learning classification [44.99833362998488]
Landslides threaten infrastructure, including roads, railways, buildings, and human life.
Hazard-based spatial planning and early warning systems are cost-effective strategies to reduce the risk to society from landslides.
Deep learning models have recently been applied for landside mapping using medium- to high-resolution satellite images as input.
arXiv Detail & Related papers (2023-09-12T10:56:16Z) - Sub-Meter Tree Height Mapping of California using Aerial Images and
LiDAR-Informed U-Net Model [0.0]
Tree canopy height is one of the most important indicators of forest biomass, productivity, and species diversity.
Here, we used a U-Net model adapted for regression to map the canopy height of all trees in the state of California with very high-resolution aerial imagery.
Our model successfully estimated canopy heights up to 50 m without saturation, outperforming existing canopy height products from global models.
arXiv Detail & Related papers (2023-06-02T22:29:58Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - High-resolution canopy height map in the Landes forest (France) based on
GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach [0.044381279572631216]
We develop a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map.
The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020.
For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.
arXiv Detail & Related papers (2022-12-20T14:14:37Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - A global method to identify trees outside of closed-canopy forests with
medium-resolution satellite imagery [0.0]
Scattered trees outside of dense, closed-canopy forests are important for carbon sequestration, supporting livelihoods, maintaining ecosystem integrity, and climate change adaptation and mitigation.
In contrast to trees inside of closed-canopy forests, not much is known about the spatial extent and distribution of scattered trees at a global scale.
We present a globally consistent method to identify trees with canopy diameters greater than three meters with medium-resolution optical and radar imagery.
arXiv Detail & Related papers (2020-05-13T15:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.