論文の概要: Novel Topological Machine Learning Methodology for Stream-of-Quality Modeling in Smart Manufacturing
- arxiv url: http://arxiv.org/abs/2404.14728v1
- Date: Tue, 23 Apr 2024 04:06:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 15:20:15.733293
- Title: Novel Topological Machine Learning Methodology for Stream-of-Quality Modeling in Smart Manufacturing
- Title(参考訳): スマートマニュファクチャリングにおけるストリーム・オブ・クオリティ・モデリングのための新しいトポロジ的機械学習手法
- Authors: Jay Lee, Dai-Yan Ji, Yuan-Ming Hsu,
- Abstract要約: 本稿では、スマート製造におけるストリーム・オブ・クオリティ評価のための5レベルサイバー物理システム(CPS)アーキテクチャにおけるトポロジ的分析手法を提案する。
提案手法は, リアルタイム品質モニタリングと予測分析を可能にするだけでなく, 製造プロセス間の品質特徴とプロセスパラメータの隠れた関係も発見する。
- 参考スコア(独自算出の注目度): 0.5852077003870417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-of-Quality assessment in smart manufacturing. The proposed methodology not only enables real-time quality monitoring and predictive analytics but also discovers the hidden relationships between quality features and process parameters across different manufacturing processes. A case study in additive manufacturing was used to demonstrate the feasibility of the proposed methodology to maintain high product quality and adapt to product quality variations. This paper demonstrates how topological graph visualization can be effectively used for the real-time identification of new representative data through the Stream-of-Quality assessment.
- Abstract(参考訳): 本稿では、スマート製造におけるストリーム・オブ・クオリティ評価のための5レベルサイバー物理システム(CPS)アーキテクチャにおけるトポロジ的分析手法を提案する。
提案手法は, リアルタイム品質モニタリングと予測分析を可能にするだけでなく, 製造プロセス間の品質特徴とプロセスパラメータの隠れた関係も発見する。
製品品質の維持と製品品質の変動に適応する手法が提案される可能性を示すために, 添加性製造におけるケーススタディを用いた。
本稿では,ストリーム・オブ・クオリティ・アセスメント(Stream-of-Qualityアセスメント)を用いて,新しい代表データのリアルタイム識別にトポロジカルグラフの可視化を効果的に活用する方法を示す。
関連論文リスト
- Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications [0.0]
本稿では,産業データストリームの動的品質次元がもたらす課題に対処する新しい枠組みを提案する。
このフレームワークは動的変更検出機構を統合し、データ品質の変化を積極的に監視し、適応する。
実験結果は、予測性能と効率的な処理時間を示し、実用的な品質駆動型AIアプリケーションにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2024-08-13T08:32:06Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - A Novel Metric for Measuring Data Quality in Classification Applications
(extended version) [0.0]
データ品質を測定するための新しい指標を紹介し説明する。
この尺度は、分類性能とデータの劣化の相関した進化に基づいている。
各基準の解釈と評価レベルの例を提供する。
論文 参考訳(メタデータ) (2023-12-13T11:20:09Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Making informed decisions in cutting tool maintenance in milling: A KNN
based model agnostic approach [0.0]
そこで本研究では,KNNをベースとしたホワイトボックスモデルを提案する。
このアプローチは、ツールが特定の状態にある理由を検出するのに役立つ。
論文 参考訳(メタデータ) (2023-10-23T07:02:30Z) - Stochastic Deep Koopman Model for Quality Propagation Analysis in
Multistage Manufacturing Systems [1.178566843877027]
本研究では、MMSの複雑な振る舞いをモデル化するための深いクープマン(SDK)フレームワークを紹介する。
本稿では,変分オートエンコーダから抽出した臨界品質情報を伝搬するクープマン演算子の新たな応用法を提案する。
論文 参考訳(メタデータ) (2023-09-18T22:53:17Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
本チュートリアルは、画像品質評価(IQA)の基礎的理論、方法論、現状の進歩を聴衆に提供する。
まず,視覚刺激を適切に選択する方法に着目し,主観的品質評価手法を再考する。
手書きのエンジニアリングと(深い)学習ベースの手法の両方をカバーします。
論文 参考訳(メタデータ) (2021-10-19T02:38:46Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Toward Enabling a Reliable Quality Monitoring System for Additive
Manufacturing Process using Deep Convolutional Neural Networks [0.0]
本稿では, 深層畳み込みニューラルネットワーク(CNN)モデルを用いて, 添加物製造(AM)プロセスの自動品質評価システムを提案する。
CNNモデルは, 層間積層における内部および表面欠陥の画像を用いてオフラインで訓練し, 異なる押出成形速度と温度でAMプロセスの故障を検出し, 分類する性能について検討した。
提案するオンラインモデルでは,AMプロセスに自動で一貫した非接触品質制御信号が付加され,完全構築後の部品の手動検査が不要になる。
論文 参考訳(メタデータ) (2020-03-06T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。