CoST: Contrastive Quantization based Semantic Tokenization for Generative Recommendation
- URL: http://arxiv.org/abs/2404.14774v2
- Date: Sat, 07 Sep 2024 16:11:36 GMT
- Title: CoST: Contrastive Quantization based Semantic Tokenization for Generative Recommendation
- Authors: Jieming Zhu, Mengqun Jin, Qijiong Liu, Zexuan Qiu, Zhenhua Dong, Xiu Li,
- Abstract summary: We propose a contrastive quantization-based semantic tokenization approach, named CoST, which harnesses both item relationships and semantic information to learn semantic tokens.
Our results highlight the significant impact of semantic tokenization on generative recommendation performance.
- Score: 38.97136297977874
- License:
- Abstract: Embedding-based retrieval serves as a dominant approach to candidate item matching for industrial recommender systems. With the success of generative AI, generative retrieval has recently emerged as a new retrieval paradigm for recommendation, which casts item retrieval as a generation problem. Its model consists of two stages: semantic tokenization and autoregressive generation. The first stage involves item tokenization that constructs discrete semantic tokens to index items, while the second stage autoregressively generates semantic tokens of candidate items. Therefore, semantic tokenization serves as a crucial preliminary step for training generative recommendation models. Existing research usually employs a vector quantizier with reconstruction loss (e.g., RQ-VAE) to obtain semantic tokens of items, but this method fails to capture the essential neighborhood relationships that are vital for effective item modeling in recommender systems. In this paper, we propose a contrastive quantization-based semantic tokenization approach, named CoST, which harnesses both item relationships and semantic information to learn semantic tokens. Our experimental results highlight the significant impact of semantic tokenization on generative recommendation performance, with CoST achieving up to a 43% improvement in Recall@5 and 44% improvement in NDCG@5 on the MIND dataset over previous baselines.
Related papers
- Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - STORE: Streamlining Semantic Tokenization and Generative Recommendation with A Single LLM [59.08493154172207]
We propose a unified framework to streamline the semantic tokenization and generative recommendation process.
We formulate semantic tokenization as a text-to-token task and generative recommendation as a token-to-token task, supplemented by a token-to-text reconstruction task and a text-to-token auxiliary task.
All these tasks are framed in a generative manner and trained using a single large language model (LLM) backbone.
arXiv Detail & Related papers (2024-09-11T13:49:48Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.
CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.
We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
arXiv Detail & Related papers (2024-05-15T14:20:37Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
We propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity.
LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias.
arXiv Detail & Related papers (2024-05-12T15:49:38Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.