Unifying Generative and Dense Retrieval for Sequential Recommendation
- URL: http://arxiv.org/abs/2411.18814v2
- Date: Fri, 06 Dec 2024 23:09:05 GMT
- Title: Unifying Generative and Dense Retrieval for Sequential Recommendation
- Authors: Liu Yang, Fabian Paischer, Kaveh Hassani, Jiacheng Li, Shuai Shao, Zhang Gabriel Li, Yun He, Xue Feng, Nima Noorshams, Sem Park, Bo Long, Robert D Nowak, Xiaoli Gao, Hamid Eghbalzadeh,
- Abstract summary: We propose LIGER, a hybrid model that combines the strengths of sequential dense retrieval and generative retrieval.
LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation.
This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
- Score: 37.402860622707244
- License:
- Abstract: Sequential dense retrieval models utilize advanced sequence learning techniques to compute item and user representations, which are then used to rank relevant items for a user through inner product computation between the user and all item representations. However, this approach requires storing a unique representation for each item, resulting in significant memory requirements as the number of items grow. In contrast, the recently proposed generative retrieval paradigm offers a promising alternative by directly predicting item indices using a generative model trained on semantic IDs that encapsulate items' semantic information. Despite its potential for large-scale applications, a comprehensive comparison between generative retrieval and sequential dense retrieval under fair conditions is still lacking, leaving open questions regarding performance, and computation trade-offs. To address this, we compare these two approaches under controlled conditions on academic benchmarks and propose LIGER (LeveragIng dense retrieval for GEnerative Retrieval), a hybrid model that combines the strengths of these two widely used methods. LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation in the datasets evaluated. This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
Related papers
- Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation [18.519480704213017]
We propose SC-Rec, a unified recommender system that learns diverse preference knowledge from two distinct item indices and multiple prompt templates.
SC-Rec considerably outperforms the state-of-the-art methods for sequential recommendation, effectively incorporating complementary knowledge from varied outputs of the model.
arXiv Detail & Related papers (2024-08-16T11:59:01Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Revisiting Neural Retrieval on Accelerators [20.415728886298915]
A key component of retrieval is to model (user, item) similarity.
Despite its popularity, dot products cannot capture complex user-item interactions, which are multifaceted and likely high rank.
We propose textitmixture of logits (MoL), which models (user, item) similarity as an adaptive composition of elementary similarity functions.
arXiv Detail & Related papers (2023-06-06T22:08:42Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.