RealTCD: Temporal Causal Discovery from Interventional Data with Large Language Model
- URL: http://arxiv.org/abs/2404.14786v2
- Date: Sun, 26 May 2024 13:08:00 GMT
- Title: RealTCD: Temporal Causal Discovery from Interventional Data with Large Language Model
- Authors: Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong Wang, Yang Li, Wenweu Zhu,
- Abstract summary: Temporal causal discovery aims to identify temporal causal relationships between variables directly from observations.
Existing methods mainly focus on synthetic datasets with heavy reliance on intervention targets.
We propose the RealTCD framework, which is able to leverage domain knowledge to discover temporal causal relationships without interventional targets.
- Score: 15.416325455014462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of Artificial Intelligence for Information Technology Operations, causal discovery is pivotal for operation and maintenance of graph construction, facilitating downstream industrial tasks such as root cause analysis. Temporal causal discovery, as an emerging method, aims to identify temporal causal relationships between variables directly from observations by utilizing interventional data. However, existing methods mainly focus on synthetic datasets with heavy reliance on intervention targets and ignore the textual information hidden in real-world systems, failing to conduct causal discovery for real industrial scenarios. To tackle this problem, in this paper we propose to investigate temporal causal discovery in industrial scenarios, which faces two critical challenges: 1) how to discover causal relationships without the interventional targets that are costly to obtain in practice, and 2) how to discover causal relations via leveraging the textual information in systems which can be complex yet abundant in industrial contexts. To address these challenges, we propose the RealTCD framework, which is able to leverage domain knowledge to discover temporal causal relationships without interventional targets. Specifically, we first develop a score-based temporal causal discovery method capable of discovering causal relations for root cause analysis without relying on interventional targets through strategic masking and regularization. Furthermore, by employing Large Language Models (LLMs) to handle texts and integrate domain knowledge, we introduce LLM-guided meta-initialization to extract the meta-knowledge from textual information hidden in systems to boost the quality of discovery. We conduct extensive experiments on simulation and real-world datasets to show the superiority of our proposed RealTCD framework over existing baselines in discovering temporal causal structures.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees [0.0]
We develop a bilevel optimization (Bloom) framework for causal structure learning.
Bloom not only provides theoretical support for causal structure discovery from both interventional and observational data, but also aspires to an efficient causal discovery algorithm.
It is seen through experiments on both synthetic and real-world datasets that Bloom markedly surpasses other leading learning algorithms.
arXiv Detail & Related papers (2024-08-09T02:22:50Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Causal Structure Learning with Recommendation System [46.90516308311924]
We first formulate the underlying causal mechanism as a causal structural model and describe a general causal structure learning framework grounded in the real-world working mechanism of recommendation systems.
We then derive the learning objective from our framework and propose an augmented Lagrangian solver for efficient optimization.
arXiv Detail & Related papers (2022-10-19T02:31:47Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Interactive Causal Structure Discovery in Earth System Sciences [6.788563219859884]
Causal structure discovery (CSD) models are making inroads into several domains, including Earth system sciences.
Their widespread adaptation is hampered by the fact that the resulting models often do not take into account the domain knowledge of the experts.
We present a workflow that is required to take this knowledge into account and to apply CSD algorithms in Earth system sciences.
arXiv Detail & Related papers (2021-07-01T09:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.