Relational Causal Discovery with Latent Confounders
- URL: http://arxiv.org/abs/2507.01700v1
- Date: Wed, 02 Jul 2025 13:29:35 GMT
- Title: Relational Causal Discovery with Latent Confounders
- Authors: Andrea Piras, Matteo Negro, Ragib Ahsan, David Arbour, Elena Zheleva,
- Abstract summary: We propose RelFCI, a complete causal discovery algorithm for relational data with latent confounders.<n>We present results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
- Score: 16.33251047653638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from real-world relational data can be challenging when the underlying causal model and potential confounders are unknown. While several causal discovery algorithms exist for learning causal models with latent confounders from data, they assume that the data is independent and identically distributed (i.i.d.) and are not well-suited for learning from relational data. Similarly, existing relational causal discovery algorithms assume causal sufficiency, which is unrealistic for many real-world datasets. To address this gap, we propose RelFCI, a sound and complete causal discovery algorithm for relational data with latent confounders. Our work builds upon the Fast Causal Inference (FCI) and Relational Causal Discovery (RCD) algorithms and it defines new graphical models, necessary to support causal discovery in relational domains. We also establish soundness and completeness guarantees for relational d-separation with latent confounders. We present experimental results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
Related papers
- Causal Cartographer: From Mapping to Reasoning Over Counterfactual Worlds [9.153187514369849]
Causal world models can answer counterfactual questions about an environment of interest.<n>It requires understanding the underlying causes behind chains of events and conducting causal inference for unseen distributions.<n>We show that our approach can extract causal knowledge while reducing inference costs and spurious correlations.
arXiv Detail & Related papers (2025-05-20T14:14:05Z) - dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data [1.9797215742507548]
We introduce the first nonparametric score to assess a Partial Ancestral Graph's compatibility with observed data.<n>We then propose data-compatible Fast Causal Inference (dcFCI) to jointly address latent confounding, empirical unfaithfulness, and mixed data types.
arXiv Detail & Related papers (2025-05-10T07:05:19Z) - Deep Causal Generative Models with Property Control [11.604321459670315]
We propose a novel deep generative framework called the Correlation-aware Causal Variational Auto-encoder (C2VAE)
C2VAE simultaneously recovers the correlation and causal relationships between properties using disentangled latent vectors.
arXiv Detail & Related papers (2024-05-25T13:07:27Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Causal Discovery under Latent Class Confounding [2.1749194587826026]
We show that globally confounded causal structures can still be identifiable with arbitrary structural equations and noise functions.
We demonstrate that globally confounded causal structures can still be identifiable with arbitrary structural equations and noise functions.
arXiv Detail & Related papers (2023-11-13T16:35:34Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.<n>One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Evaluation of Induced Expert Knowledge in Causal Structure Learning by
NOTEARS [1.5469452301122175]
We study the impact of expert knowledge on causal relations in the form of additional constraints used in the formulation of the nonparametric NOTEARS model.
We found that (i) knowledge that corrects the mistakes of the NOTEARS model can lead to statistically significant improvements, (ii) constraints on active edges have a larger positive impact on causal discovery than inactive edges, and surprisingly, (iii) the induced knowledge does not correct on average more incorrect active and/or inactive edges than expected.
arXiv Detail & Related papers (2023-01-04T20:39:39Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Federated Causal Discovery [74.37739054932733]
This paper develops a gradient-based learning framework named DAG-Shared Federated Causal Discovery (DS-FCD)
It can learn the causal graph without directly touching local data and naturally handle the data heterogeneity.
Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.
arXiv Detail & Related papers (2021-12-07T08:04:12Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders [6.1221613913018675]
This paper proposes a causal functional model-based method called repetitive causal discovery (RCD) to discover the causal structure of observed variables affected by latent confounders.
RCD repeats inferring the causal directions between a small number of observed variables and determines whether the relationships are affected by latent confounders.
arXiv Detail & Related papers (2020-01-13T12:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.