Self-Harmonized Chain of Thought
- URL: http://arxiv.org/abs/2409.04057v1
- Date: Fri, 6 Sep 2024 06:57:04 GMT
- Title: Self-Harmonized Chain of Thought
- Authors: Ziqi Jin, Wei Lu,
- Abstract summary: Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps.
ECHO demonstrates the best overall performance across three reasoning domains.
- Score: 8.540320749424172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps. CoT prompting is primarily categorized into three approaches. The first approach utilizes straightforward prompts like ``Let's think step by step'' to generate a sequential thought process before yielding an answer. The second approach makes use of human-crafted, step-by-step demonstrations to guide the model's reasoning process. The third automates the generation of reasoned demonstrations with the 'Let's think step by step'.This approach sometimes leads to reasoning errors, highlighting the need to diversify demonstrations to mitigate its misleading effects. However, diverse demonstrations pose challenges for effective representations. In this work, we propose ECHO, a self-harmonized chain-of-thought prompting method. It consolidates diverse solution paths into a uniform and effective solution pattern.ECHO demonstrates the best overall performance across three reasoning domains.
Related papers
- Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.
We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.
Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - Pattern-Aware Chain-of-Thought Prompting in Large Language Models [26.641713417293538]
Chain-of-thought (CoT) prompting can guide language models to engage in complex multi-step reasoning.
We show that the underlying reasoning patterns play a more crucial role in such tasks.
We propose Pattern-Aware CoT, a prompting method that considers the diversity of demonstration patterns.
arXiv Detail & Related papers (2024-04-23T07:50:00Z) - Soft-Prompting with Graph-of-Thought for Multi-modal Representation Learning [45.517215214938844]
Chain-of-thought technique has been received well in multi-modal tasks.
We propose a novel Aggregation-Graph-of-Thought (AGoT) mechanism for soft-prompt tuning in multi-modal representation learning.
arXiv Detail & Related papers (2024-04-06T07:39:44Z) - Contrastive Chain-of-Thought Prompting [74.10511560147293]
We propose contrastive chain of thought to enhance language model reasoning.
Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations.
Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.
arXiv Detail & Related papers (2023-11-15T18:54:01Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish (SP) is a novel method that facilitates the model's reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable.
SP is to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement.
arXiv Detail & Related papers (2023-05-23T19:58:30Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z) - Synthetic Prompting: Generating Chain-of-Thought Demonstrations for
Large Language Models [121.54462976635743]
Large language models can perform various reasoning tasks by using chain-of-thought prompting, which guides them to find answers through step-by-step demonstrations.
We introduce Synthetic prompting, a method that leverages a few handcrafted examples to prompt the model to generate more examples by itself.
We evaluate our method on numerical, symbolic, and algorithmic reasoning tasks, and show that it outperforms existing prompting techniques.
arXiv Detail & Related papers (2023-02-01T17:33:12Z) - Automatic Chain of Thought Prompting in Large Language Models [20.54898481696753]
Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps.
"Let's think step by step" prompt generates reasoning chains for demonstrations one by one.
We propose an automatic CoT prompting method: Auto-CoT.
arXiv Detail & Related papers (2022-10-07T12:28:21Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.