Semi-supervised 2D Human Pose Estimation via Adaptive Keypoint Masking
- URL: http://arxiv.org/abs/2404.14835v1
- Date: Tue, 23 Apr 2024 08:41:50 GMT
- Title: Semi-supervised 2D Human Pose Estimation via Adaptive Keypoint Masking
- Authors: Kexin Meng, Ruirui Li, Daguang Jiang,
- Abstract summary: This paper proposes an adaptive keypoint masking method, which can fully mine the information in the samples and obtain better estimation performance.
The effectiveness of the proposed method is verified on COCO and MPII, outperforming the state-of-the-art semi-supervised pose estimation by 5.2% and 0.3%, respectively.
- Score: 2.297586471170049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human pose estimation is a fundamental and challenging task in computer vision. Larger-scale and more accurate keypoint annotations, while helpful for improving the accuracy of supervised pose estimation, are often expensive and difficult to obtain. Semi-supervised pose estimation tries to leverage a large amount of unlabeled data to improve model performance, which can alleviate the problem of insufficient labeled samples. The latest semi-supervised learning usually adopts a strong and weak data augmented teacher-student learning framework to deal with the challenge of "Human postural diversity and its long-tailed distribution". Appropriate data augmentation method is one of the key factors affecting the accuracy and generalization of semi-supervised models. Aiming at the problem that the difference of sample learning is not considered in the fixed keypoint masking augmentation method, this paper proposes an adaptive keypoint masking method, which can fully mine the information in the samples and obtain better estimation performance. In order to further improve the generalization and robustness of the model, this paper proposes a dual-branch data augmentation scheme, which can perform Mixup on samples and features on the basis of adaptive keypoint masking. The effectiveness of the proposed method is verified on COCO and MPII, outperforming the state-of-the-art semi-supervised pose estimation by 5.2% and 0.3%, respectively.
Related papers
- What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
Recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks.
We conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors.
Our work culminates in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks.
arXiv Detail & Related papers (2024-03-10T04:23:24Z) - Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision [40.984680166762345]
We introduce Model-induced Process Supervision (MiPS), a novel method for automating data curation.
MiPS annotates an intermediate step by sampling completions of this solution through the reasoning model, and obtaining an accuracy defined as the proportion of correct completions.
Our approach significantly improves the performance of PaLM 2 on math and coding tasks.
arXiv Detail & Related papers (2024-02-05T00:57:51Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - Modeling the Uncertainty with Maximum Discrepant Students for
Semi-supervised 2D Pose Estimation [57.17120203327993]
We propose a framework to estimate the quality of pseudo-labels in semi-supervised pose estimation tasks.
Our method improves the performance of semi-supervised pose estimation on three datasets.
arXiv Detail & Related papers (2023-11-03T08:11:06Z) - Exploring Data Augmentations on Self-/Semi-/Fully- Supervised
Pre-trained Models [24.376036129920948]
We investigate how data augmentation affects performance of vision pre-trained models.
We apply 4 types of data augmentations termed with Random Erasing, CutOut, CutMix and MixUp.
We report their performance on vision tasks such as image classification, object detection, instance segmentation, and semantic segmentation.
arXiv Detail & Related papers (2023-10-28T23:46:31Z) - Denoising and Selecting Pseudo-Heatmaps for Semi-Supervised Human Pose
Estimation [38.97427474379367]
We introduce a denoising scheme to generate reliable pseudo-heatmaps as targets for learning from unlabeled data.
We select the learning targets from these pseudo-heatmaps guided by the estimated cross-student uncertainty.
Our results show that our model outperforms previous state-of-the-art semi-supervised pose estimators.
arXiv Detail & Related papers (2023-09-29T19:17:30Z) - Semi-Supervised 2D Human Pose Estimation Driven by Position
Inconsistency Pseudo Label Correction Module [74.80776648785897]
The previous method ignored two problems: (i) When conducting interactive training between large model and lightweight model, the pseudo label of lightweight model will be used to guide large models.
We propose a semi-supervised 2D human pose estimation framework driven by a position inconsistency pseudo label correction module (SSPCM)
To further improve the performance of the student model, we use the semi-supervised Cut-Occlude based on pseudo keypoint perception to generate more hard and effective samples.
arXiv Detail & Related papers (2023-03-08T02:57:05Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.