Probabilistic forecasting of power system imbalance using neural network-based ensembles
- URL: http://arxiv.org/abs/2404.14836v3
- Date: Fri, 04 Oct 2024 12:15:02 GMT
- Title: Probabilistic forecasting of power system imbalance using neural network-based ensembles
- Authors: Jonas Van Gompel, Bert Claessens, Chris Develder,
- Abstract summary: We propose an ensemble of C-VSNs, which are our adaptation of variable selection networks (VSNs)
Each minute, our model predicts the imbalance of the current and upcoming two quarter-hours, along with uncertainty estimations on these forecasts.
For high imbalance magnitude situations, our model outperforms the state-of-the-art by 23.4%.
- Score: 4.573008040057806
- License:
- Abstract: Keeping the balance between electricity generation and consumption is becoming increasingly challenging and costly, mainly due to the rising share of renewables, electric vehicles and heat pumps and electrification of industrial processes. Accurate imbalance forecasts, along with reliable uncertainty estimations, enable transmission system operators (TSOs) to dispatch appropriate reserve volumes, reducing balancing costs. Further, market parties can use these probabilistic forecasts to design strategies that exploit asset flexibility to help balance the grid, generating revenue with known risks. Despite its importance, literature regarding system imbalance (SI) forecasting is limited. Further, existing methods do not focus on situations with high imbalance magnitude, which are crucial to forecast accurately for both TSOs and market parties. Hence, we propose an ensemble of C-VSNs, which are our adaptation of variable selection networks (VSNs). Each minute, our model predicts the imbalance of the current and upcoming two quarter-hours, along with uncertainty estimations on these forecasts. We evaluate our approach by forecasting the imbalance of Belgium, where high imbalance magnitude is defined as $|$SI$| > 500\,$MW (occurs 1.3% of the time in Belgium). For high imbalance magnitude situations, our model outperforms the state-of-the-art by 23.4% (in terms of continuous ranked probability score (CRPS), which evaluates probabilistic forecasts), while also attaining a 6.5% improvement in overall CRPS. Similar improvements are achieved in terms of root-mean-squared error. Additionally, we developed a fine-tuning methodology to effectively include new inputs with limited history in our model. This work was performed in collaboration with Elia (the Belgian TSO) to further improve their imbalance forecasts, demonstrating the relevance of our work.
Related papers
- Predicting and Publishing Accurate Imbalance Prices Using Monte Carlo Tree Search [4.950434218152639]
We propose a Monte Carlo Tree Search method that publishes accurate imbalance prices while accounting for potential response actions.
Our approach models the system dynamics using a neural network forecaster and a cluster of virtual batteries controlled by reinforcement learning agents.
arXiv Detail & Related papers (2024-11-06T15:49:28Z) - Predict. Optimize. Revise. On Forecast and Policy Stability in Energy Management Systems [3.3295510777293837]
This research addresses the challenge of integrating forecasting and optimization in energy management systems.
It proposes a novel framework for analyzing online optimization problems with switching costs and enabled by deterministic and probabilistic forecasts.
arXiv Detail & Related papers (2024-06-29T12:28:30Z) - Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand [8.068451210598678]
Power systems operate under uncertainty originating from multiple factors that are impossible to account for deterministically.
Recent progress in deep learning has helped to significantly improve the accuracy of point forecasts.
We propose a novel general approach for distributional forecasting capable of predicting arbitrary quantiles.
arXiv Detail & Related papers (2024-04-26T14:43:19Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
We study whether using CRPS learning, a novel weighting technique, leads to optimal decisions in day-ahead bidding.
We find that increasing the diversity of an ensemble can have a positive impact on accuracy.
The higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits.
arXiv Detail & Related papers (2023-08-29T17:10:38Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Robust Nonparametric Distribution Forecast with Backtest-based Bootstrap
and Adaptive Residual Selection [14.398720944586803]
Distribution forecast can quantify forecast uncertainty and provide various forecast scenarios with corresponding estimated probabilities.
We propose a practical and robust distribution forecast framework that relies on backtest-based bootstrap and adaptive residual selection.
arXiv Detail & Related papers (2022-02-16T09:53:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.