Uncertainty-Aware Knowledge Transformers for Peer-to-Peer Energy Trading with Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2507.16796v1
- Date: Tue, 22 Jul 2025 17:46:28 GMT
- Title: Uncertainty-Aware Knowledge Transformers for Peer-to-Peer Energy Trading with Multi-Agent Reinforcement Learning
- Authors: Mian Ibad Ali Shah, Enda Barrett, Karl Mason,
- Abstract summary: This paper presents a novel framework for Peer-to-Peer (P2P) energy trading that integrates uncertainty-aware prediction with multi-agent reinforcement learning (MARL)<n>The proposed approach employs a heteroscedastic probabilistic transformer-based prediction model called Knowledge Transformer with Uncertainty (KTU) to explicitly quantify prediction uncertainty.<n> Experimental results show that the uncertainty-aware Deep Q-Network (DQN) reduces energy purchase costs by up to 5.7% without P2P trading and 3.2% with P2P trading, while increasing electricity sales revenue by 6.4% and 44.7%, respectively.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel framework for Peer-to-Peer (P2P) energy trading that integrates uncertainty-aware prediction with multi-agent reinforcement learning (MARL), addressing a critical gap in current literature. In contrast to previous works relying on deterministic forecasts, the proposed approach employs a heteroscedastic probabilistic transformer-based prediction model called Knowledge Transformer with Uncertainty (KTU) to explicitly quantify prediction uncertainty, which is essential for robust decision-making in the stochastic environment of P2P energy trading. The KTU model leverages domain-specific features and is trained with a custom loss function that ensures reliable probabilistic forecasts and confidence intervals for each prediction. Integrating these uncertainty-aware forecasts into the MARL framework enables agents to optimize trading strategies with a clear understanding of risk and variability. Experimental results show that the uncertainty-aware Deep Q-Network (DQN) reduces energy purchase costs by up to 5.7% without P2P trading and 3.2% with P2P trading, while increasing electricity sales revenue by 6.4% and 44.7%, respectively. Additionally, peak hour grid demand is reduced by 38.8% without P2P and 45.6% with P2P. These improvements are even more pronounced when P2P trading is enabled, highlighting the synergy between advanced forecasting and market mechanisms for resilient, economically efficient energy communities.
Related papers
- A Hybrid Strategy for Aggregated Probabilistic Forecasting and Energy Trading in HEFTCom2024 [0.11650821883155187]
This paper presents the solution of team GEB, which ranked 3rd in trading, 4th in forecasting, and 1st among student teams in the IEEE Hybrid Energy Forecasting and Trading Competition 2024 (HEFTCom2024)<n>The solution provides accurate probabilistic forecasts for a wind-solar hybrid system, and achieves substantial trading revenue in the day-ahead electricity market.
arXiv Detail & Related papers (2025-05-15T14:55:11Z) - ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market [45.62331048595689]
This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market.<n>We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models.<n>Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models.
arXiv Detail & Related papers (2025-03-21T15:21:43Z) - Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.<n>This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.<n>We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Probabilistic forecasting of power system imbalance using neural network-based ensembles [4.573008040057806]
We propose an ensemble of C-VSNs, which are our adaptation of variable selection networks (VSNs)
Each minute, our model predicts the imbalance of the current and upcoming two quarter-hours, along with uncertainty estimations on these forecasts.
For high imbalance magnitude situations, our model outperforms the state-of-the-art by 23.4%.
arXiv Detail & Related papers (2024-04-23T08:42:35Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
arXiv Detail & Related papers (2024-03-29T12:34:57Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
We study whether using CRPS learning, a novel weighting technique, leads to optimal decisions in day-ahead bidding.
We find that increasing the diversity of an ensemble can have a positive impact on accuracy.
The higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits.
arXiv Detail & Related papers (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.