MultiSTOP: Solving Functional Equations with Reinforcement Learning
- URL: http://arxiv.org/abs/2404.14909v1
- Date: Tue, 23 Apr 2024 10:51:31 GMT
- Title: MultiSTOP: Solving Functional Equations with Reinforcement Learning
- Authors: Alessandro Trenta, Davide Bacciu, Andrea Cossu, Pietro Ferrero,
- Abstract summary: We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
- Score: 56.073581097785016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics. This new methodology produces actual numerical solutions instead of bounds on them. We extend the original BootSTOP algorithm by adding multiple constraints derived from domain-specific knowledge, even in integral form, to improve the accuracy of the solution. We investigate a particular equation in a one-dimensional Conformal Field Theory.
Related papers
- A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework.
By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process.
The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations.
arXiv Detail & Related papers (2024-09-05T13:20:10Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
This paper introduces an efficient tensor-vector product technique for the approximation of integral operators within physics-informed deep learning frameworks.
We demonstrate the applicability of this method to both Fredholm and Volterra integral operators.
We also propose a fast matrix-vector product algorithm for efficiently computing the fractional Caputo derivative.
arXiv Detail & Related papers (2024-09-03T13:43:58Z) - Transfer Operator Learning with Fusion Frame [0.0]
This work presents a novel framework that enhances the transfer learning capabilities of operator learning models for solving Partial Differential Equations (PDEs)
We introduce an innovative architecture that combines fusion frames with POD-DeepONet, demonstrating superior performance across various PDEs in our experimental analysis.
Our framework addresses the critical challenge of transfer learning in operator learning models, paving the way for adaptable and efficient solutions across a wide range of scientific and engineering applications.
arXiv Detail & Related papers (2024-08-20T00:03:23Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - QBoost for regression problems: solving partial differential equations [0.0]
The hybrid algorithm is capable of finding a solution to a partial differential equation with good precision and favorable scaling in the required number of qubits.
The classical part is composed by training several regressors, capable of solving a partial differential equation using machine learning.
The quantum part consists of adapting the QBoost algorithm to solve regression problems.
arXiv Detail & Related papers (2021-08-30T16:13:04Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.