QBoost for regression problems: solving partial differential equations
- URL: http://arxiv.org/abs/2108.13346v1
- Date: Mon, 30 Aug 2021 16:13:04 GMT
- Title: QBoost for regression problems: solving partial differential equations
- Authors: Caio B. D. G\'oes, Thiago O. Maciel, Giovani G. Pollachini, Rafael
Cuenca, Juan P. L. C. Salazar, Eduardo I. Duzzioni
- Abstract summary: The hybrid algorithm is capable of finding a solution to a partial differential equation with good precision and favorable scaling in the required number of qubits.
The classical part is composed by training several regressors, capable of solving a partial differential equation using machine learning.
The quantum part consists of adapting the QBoost algorithm to solve regression problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A hybrid algorithm based on machine learning and quantum ensemble learning is
proposed that is capable of finding a solution to a partial differential
equation with good precision and favorable scaling in the required number of
qubits. The classical part is composed by training several regressors
(weak-learners), capable of solving a partial differential equation using
machine learning. The quantum part consists of adapting the QBoost algorithm to
solve regression problems. We have successfully applied our framework to solve
the 1D Burgers' equation with viscosity, showing that the quantum ensemble
method really improves the solutions produced by weak-learners. We also
implemented the algorithm on the D-Wave Systems, confirming the best
performance of the quantum solution compared to the simulated annealing and
exact solver methods, given the memory limitations of our classical computer
used in the comparison.
Related papers
- A hybrid quantum solver for the Lorenz system [0.2770822269241974]
We develop a hybrid classical-quantum method for solving the Lorenz system.
We use the forward Euler method to discretize the system in time, transforming it into a system of equations.
We present numerical results comparing the hybrid method with the classical approach for solving the Lorenz system.
arXiv Detail & Related papers (2024-10-20T15:20:28Z) - H-DES: a Quantum-Classical Hybrid Differential Equation Solver [0.0]
We introduce an original hybrid quantum-classical algorithm for solving systems of differential equations.
The algorithm relies on a spectral method, which involves encoding the solution functions in the amplitudes of the quantum states generated by different parametrized circuits.
arXiv Detail & Related papers (2024-10-01T23:47:41Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations.
Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation cost scales economically with the number of time steps.
arXiv Detail & Related papers (2024-06-13T02:27:16Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
adjoint sensitivity method scalably computes gradients of ordinary differential equations.
We generalize this method to differential equations, allowing time-efficient and constant-memory computation.
We use our method to fit neural dynamics defined by networks, achieving competitive performance on a 50-dimensional motion capture dataset.
arXiv Detail & Related papers (2020-01-05T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.